Purification and Mn2+ activation of Rhodospirillum rubrum nitrogenase activating enzyme

1982 ◽  
Vol 152 (2) ◽  
pp. 714-721
Author(s):  
J W Gotto ◽  
D C Yoch

The Fe protein activating enzyme for Rhodospirillum rubrum nitrogenase was purified to approximately 90% homogeneity, using DE52-cellulose chromatography and sucrose density gradient centrifugation. Activating enzyme consists of a single polypeptide of molecular weight approximately 24,000. ATP was required for catalytic activity, but was relatively ineffective in the absence of Mg2+. When the concentration of MgATP2- was held in excess, there was an additional requirement for a free divalent metal ion (Mn2+) for enzyme activity. Kinetic experiments showed that the presence of Mg2+ influenced the apparent binding of Mn2+ by the enzyme, resulting in a lowering of the concentration of Mn2+ required to give half-maximum activity (K alpha) as the free Mg2+ concentration was increased. A low concentration of Mn2+ had a sparing effect on the requirement for free Mg2+. There is apparently a single metal-binding site on activating enzyme which preferentially binds Mn2+ as a positive effector, and free Mg2+ can compete for this site.

1977 ◽  
Vol 162 (3) ◽  
pp. 483-491 ◽  
Author(s):  
H J Wedner ◽  
C W Parker

Nuclei from purified human peripheral lymphocytes were prepared by incubations with Triton X-100 to disrupt the cells, followed by sucrose-density gradient centrifugation. The nuclei were pure as judged by phase-contrast microscopy and had low contents of non-nuclear marker enzymes. In addition, nuclei prepared from lymphocytes surface-labelled with 125I had only 2-7% of the radioactivity bound to intact lymphocytes. At 3.3 mM-Ca2+ and 100 micronM-ATP a fluoride-sensitive adenylate cyclase was demonstrated in nuclei prepared in 0.2% Triton X-100 or 0.33% Triton X-100. There was linear accumulation of cyclic AMP for 10 min in both preparations. The apparent Km for ATP was 90 micronM. Adenylate cyclase activity was augmented by 1.0 mM-Mn2+ and inhibited at higher concentrations. Ca2+ showed two peaks of stimulation, at 1.0-2.5 mM- and above 10 mM-Ca2+. Mg2+ was inhibitory at all concentrations. EDTA OR EGTA only slightly decreased adenylate cyclase activity, suggesting that another metal ion may be necessary for activity. Adenylate cyclase activity was stimulated by 10mM-isoproterenol and 10 micronM-adrenaline in the presence of a phosphodiesterase inhibitor. Phytohaemagglutinin and prostaglandin E1 alone or in combination with isoproterenol had no effect on nuclear adenylate cyclase activity in either nuclei preparation. These results indicate that human lymphocyte nuclei contain one or several adenylate cyclases which differ from adenylate cyclases found in other subcellular fractions of these cells with regard to their bivalentcation requirements and responsiveness to pharmacological agents.


1983 ◽  
Vol 50 (04) ◽  
pp. 848-851 ◽  
Author(s):  
Marjorie B Zucker ◽  
David Varon ◽  
Nicholas C Masiello ◽  
Simon Karpatkin

SummaryPlatelets deprived of calcium and incubated at 37° C for 10 min lose their ability to bind fibrinogen or aggregate with ADP when adequate concentrations of calcium are restored. Since the calcium complex of glycoproteins (GP) IIb and IIIa is the presumed receptor for fibrinogen, it seemed appropriate to examine the behavior of these glycoproteins in incubated non-aggregable platelets. No differences were noted in the electrophoretic pattern of nonaggregable EDTA-treated and aggregable control CaEDTA-treated platelets when SDS gels of Triton X- 114 fractions were stained with silver. GP IIb and IIIa were extracted from either nonaggregable EDTA-treated platelets or aggregable control platelets with calcium-Tris-Triton buffer and subjected to sucrose density gradient centrifugation or crossed immunoelectrophoresis. With both types of platelets, these glycoproteins formed a complex in the presence of calcium. If the glycoproteins were extracted with EDTA-Tris-Triton buffer, or if Triton-solubilized platelet membranes were incubated with EGTA at 37° C for 30 min, GP IIb and IIIa were unable to form a complex in the presence of calcium. We conclude that inability of extracted GP IIb and IIIa to combine in the presence of calcium is not responsible for the irreversible loss of aggregability that occurs when whole platelets are incubated with EDTA at 37° C.


1974 ◽  
Vol 141 (1) ◽  
pp. 93-101 ◽  
Author(s):  
P. R. V. Nayudu ◽  
Fraser B. Hercus

Polyacrylamide-gel electrophoresis and Bio-Gel P-300 molecular-sieve chromatography of mouse duodenal alkaline phosphatase demonstrates its molecular heterogeneity, which, in a kinetic sense, is manifest also in the differential relative velocities of the heterogeneous forms of the enzyme with two substrates, phenylphosphate and β-glycerophosphate. Different treatments that eliminate most of the electrophoretic and chromatographic variability of the enzyme also decrease the velocities with both substrates so that the molar ratio of hydrolysis of one substrate relative to the other is also altered to a low but stable value. Concomitant with these changes, lipids and peptides are dissociated from the enzyme. The lipids are tentatively identified as a sterol and phospholipids. The peptides have an average composition of four to six amino acids and appear to be strongly electropositive. The conditions of dissociation suggest that their binding to the enzyme is non-covalent and predominantly based on hydrophobic and ionic bonding. The concept of lipid and peptide association would suggest prima facie differential molecular weights as a factor in the observed electrophoretic and chromatographic heterogeneity. However, the molecular forms of the enzyme with differences in elution volume equivalent to more than one-half the void volume of the Bio-Gel P-300 column, or even enzyme fractions dissociated from the lipids and peptides compared with undissociated portions, do not show any differences in sedimentation on sucrose-density-gradient centrifugation. This may be because the alterations in molecular weight owing to binding of small molecules are too small to be detected by this method. Alternatively, since lipids are involved, the binding may alter the partial specific volume in such a way that the buoyant density is not significantly altered.


1983 ◽  
Vol 210 (1) ◽  
pp. 259-263 ◽  
Author(s):  
J Hubbard ◽  
M Kalimi

Citrate greatly stabilized rat hepatic unbound glucocorticoid receptors in cell-free conditions at 4 degrees C with optimal effectiveness at 5-15 mM. Control receptors were inactivated at 4 degrees C with a half-life of less than 12 h. However, in the presence of 10 mM-citrate, unbound receptors were almost completely stabilized for 48 h at 4 degrees C. Citrate at a concentration of 1-2 mM yielded half-maximal stabilization. The stabilizing effect of citrate was rather specific, as succinate, alpha-oxoglutarate, oxaloacetate, malate and pyruvate had no apparent stabilizing action. Citrate stabilized receptors over a wide range of H+ concentrations, with complete protection between pH 6.5 and 8.5. In addition, citrate appeared to have a significant effect on glucocorticoid-receptor complex activation into a nuclear binding form. Thus 5-10 mM-citrate enhanced nuclear binding, with optimal activation achieved at 10 mM concentration. As analysed by sucrose-density-gradient centrifugation and DEAE-cellulose chromatography, no apparent change was observed in the physical characteristics of the glucocorticoid receptor in the presence of citrate.


1973 ◽  
Vol 135 (1) ◽  
pp. 73-79 ◽  
Author(s):  
J. F. Giorgini ◽  
F. L. De Lucca

Instability of 28S rRNA of Crotalus durissus terrificus liver was observed during hotphenol extraction: purified 28S rRNA is converted into an 18S RNA component by heat treatment. It was also found that ‘6S’ and ‘8S’ low-molecular-weight RNA species were released during the thermal conversion. This conversion and the release of the low-molecular-weight species were also induced by 8m-urea and 80% (v/v) dimethyl sulphoxide at 0°C. Evidence is presented that this phenomenon is an irreversible process and results from the rupture of hydrogen bonds. The 18S RNA product was shown to be homogeneous by polyacrylamide-gel electrophoresis and by sucrose-density-gradient centrifugation. The base composition of the 18S RNA products obtained by heat, urea or dimethyl sulphoxide treatments was similar. The C+G content of the 18S RNA product was different from that of the native 18S rRNA, but similar to that of 28S rRNA.


1975 ◽  
Vol 142 (6) ◽  
pp. 1416-1424 ◽  
Author(s):  
S Fujita ◽  
S D Litwin ◽  
N Hartman

A method is described which employs differential centrifugation and sucrose density gradient centrifugation to isolate a membrane fraction from human lymphocytes. Membrane preparations from long-term human cultured B- and T-lymphoid lines, peripheral blood lymphocytes, tonsillar lymphocytes, and thymocytes were analyzed on 0.5% sodium dodecyl sulfate-7.5% polyacrylamide gels stained for protein and carbohydrate. The most important finding was a major glycoprotein of approximately 30,000 daltons associated with the membrane preparations from B lymphocytes. T-lymphocyte preparations did not contain readily detectable amounts of this membrane-associated component. The T-cell lymphoid line MOLT-4 was unique in that it had a narrow protein band at approximately 30,000 daltons which did not contain carbohydrate.


1981 ◽  
Vol 49 (1) ◽  
pp. 33-49 ◽  
Author(s):  
R. Kuriyama ◽  
H. Kanatani

Centrioles from spermatozoa of the starfish, Asterina pectinifera, were isolated and partially purified by solubilization of chromatin followed by sucrose density-gradient centrifugation. The ultrastructure of the isolated centriolar complex was investigated in whole mount preparations by electron microscopy. The complex unit was composed of a pair of centrioles and a pericentriolar structure, which associated with the distal end of the distal centriole by 9 spoke-like satellites extending radially to a marginal ring. Each satellite bifurcated at a dense node forming 2 fan-like shapes with a periodic striated pattern. The tubular structure of the centrioles easily disintegrated, leaving the pericentriolar structure or axonemal microtubules intact. The distal centriole in a spermatozoon served as an initiating site for flagellar microtubule assembly; that is, a number of “9 + 2′ axonemal tubules were observed adhering just beneath the distal end of the basal body. In experiments in vitro, polymerization of microtubule proteins purified from porcine brain was initiated by the structure at the ends of both proximal and distal centrioles, but not from the satellites or the marginal ring. Also, few if any microtubules were formed from the sides of each centriole, even in the presence of a high concentration of exogenous tubulin. On the other hand, centrioles of spermatozoa, when they were in mature ooplasm, could initiate the formation of sperm asters by microtubules. Therefore, centrioles in spermatozoa seem to be able to initiate microtubules in a 2 ways. A possible explanation of the difference between the 2 types of microtubule organization in vivo, i.e. in the sperm cell itself and in the ooplasm, it discussed.


1990 ◽  
Vol 45 (9-10) ◽  
pp. 963-972 ◽  
Author(s):  
Hildegard Maria Warneck ◽  
Hanns Ulrich Seitz

Abstract A 3 β-hydroxysteroid oxidoreductase was isolated and characterized in the microsomes of Digitalis lanata cell cultures. The enzyme catalyzes the conversion of 5α-pregnane-3,20-dione to 5a-pregnan-3 β-ol-20-one and requires NAD(P)H2. The enzyme was found to have a pH optimum of 80. The reaction had an optimum incubation temperature of 25 °C with linear reduction for the first 4 h, reaching maximum enzyme activity after 7 h. Substrate kinetics for 5a-pregnane-3,20-dione and NADPH2 resulted in apparent Km-values of 18.5-20 (µM for 5a-pregnane-3,20-dione and 50-120 µM for the co-substrate NADPH2. In order to localize 3β-hydroxysteroid oxidoreductase differential centrifugation as well as linear sucrose density gradient centrifugation were performed. The results obtained lead to the conclusion that 3β-hydroxysteroid oxidoreductase is not associated with a single cell compartment, but consists of a major soluble part and a markedly smaller part of endoplasmic reticulum-associated activity


Sign in / Sign up

Export Citation Format

Share Document