scholarly journals A two-component regulatory system required for copper-inducible expression of the copper resistance operon of Pseudomonas syringae.

1993 ◽  
Vol 175 (6) ◽  
pp. 1656-1664 ◽  
Author(s):  
S D Mills ◽  
C A Jasalavich ◽  
D A Cooksey
2000 ◽  
Vol 182 (20) ◽  
pp. 5864-5871 ◽  
Author(s):  
George P. Munson ◽  
Deborah L. Lam ◽  
F. Wayne Outten ◽  
Thomas V. O'Halloran

ABSTRACT Using a genetic screen we have identified two chromosomal genes,cusRS (ylcA ybcZ), from Escherichia coli K-12 that encode a two-component, signal transduction system that is responsive to copper ions. This regulatory system is required for copper-induced expression of pcoE, a plasmid-borne gene from the E. coli copper resistance operon pco. The closest homologs of CusR and CusS are plasmid-borne two-component systems that are also involved in metal responsive gene regulation: PcoR and PcoS from the pcooperon of E. coli; CopR and CopS from thecop operon, which provides copper resistance toPseudomonas syringae; and SilR and SilS from thesil locus, which provides silver ion resistance toSalmonella enterica serovar Typhimurium. The genescusRS are also required for the copper-dependent expression of at least one chromosomal gene, designated cusC(ylcB), which is allelic to the recently identified virulence gene ibeB in E. coli K1. Thecus locus may comprise a copper ion efflux system, because the expression of cusC is induced by high concentrations of copper ions. Furthermore, the translation products of cusCand additional downstream genes are homologous to known metal ion antiporters.


Microbiology ◽  
2008 ◽  
Vol 154 (9) ◽  
pp. 2700-2708 ◽  
Author(s):  
Yvonne Braun ◽  
Angela V. Smirnova ◽  
Alexander Schenk ◽  
Helge Weingart ◽  
Claudia Burau ◽  
...  

1999 ◽  
Vol 65 (6) ◽  
pp. 2294-2299 ◽  
Author(s):  
S. T. Chancey ◽  
D. W. Wood ◽  
L. S. Pierson

ABSTRACT Production of phenazine antibiotics by the biological control bacterium Pseudomonas aureofaciens 30-84 is regulated in part by the PhzI/PhzR N-acyl-homoserine lactone (AHL) response system (L. S. Pierson III, V. D. Keppenne, and D. W. Wood, J. Bacteriol. 176:3966–3974, 1994; D. W. Wood and L. S. Pierson III, Gene 168:49–53, 1996). Two mutants, 30-84W and 30-84.A2, were isolated and were found to be deficient in the production of phenazine, protease, hydrogen cyanide (HCN), and the AHL signal N-hexanoyl-homoserine lactone. These mutants were not complemented by phzI, phzR, or the phenazine biosynthetic genes (phzFABCD) (L. S. Pierson III, T. Gaffney, S. Lam, and F. Gong, FEMS Microbiol. Lett. 134:299–307, 1995). A 2.2-kb region of the 30-84 chromosome which fully restored production of all of these compounds in strain 30-84W was identified. Nucleotide sequence analysis of this region revealed a single open reading frame encoding a predicted 213-amino-acid protein which is very similar to the global response regulator GacA. Strain 30-84.A2 was not complemented by gacA or any cosmid from a genomic library of strain 30-84 but was complemented bygacS (formerly lemA) homologs fromPseudomonas fluorescens Pf-5 (N. Corbel and J. E. Loper, J. Bacteriol. 177:6230–6236, 1995) and Pseudomonas syringae pv. syringae B728a (E. M. Hrabek and D. K. Willis, J. Bacteriol. 174:3011–3020, 1992). Transcription ofphzR was not altered in either mutant; however,phzI transcription was eliminated in strains 30-84W and 30-84.A2. These results indicated that the GacS/GacA two-component signal transduction system of P. aureofaciens 30-84 controls the production of AHL required for phenazine production by mediating the transcription of phzI. Addition of exogenous AHL did not complement either mutant for phenazine production, indicating that the GacS/GacA global regulatory system controls phenazine production at multiple levels. Our results reveal for the first time a mechanism by which a two-component regulatory system and an AHL-mediated regulatory system interact.


2005 ◽  
Vol 71 (2) ◽  
pp. 782-789 ◽  
Author(s):  
Andreas E. Voloudakis ◽  
Therese M. Reignier ◽  
Donald A. Cooksey

ABSTRACT Copper-resistant strains of Xanthomonas axonopodis pv. vesicatoria were previously shown to carry plasmid-borne copper resistance genes related to the cop and pco operons of Pseudomonas syringae and Escherichia coli, respectively. However, instead of the two-component (copRS and pcoRS) systems determining copper-inducible expression of the operons in P. syringae and E. coli, a novel open reading frame, copL, was found to be required for copper-inducible expression of the downstream multicopper oxidase copA in X. axonopodis. copL encodes a predicted protein product of 122 amino acids that is rich in histidine and cysteine residues, suggesting a possible direct interaction with copper. Deletions or frameshift mutations within copL, as well as an amino acid substitution generated at the putative start codon of copL, caused a loss of copper-inducible transcriptional activation of copA. A nonpolar insertion of a kanamycin resistance gene in copL resulted in copper sensitivity in the wild-type strain. However, repeated attempts to complement copL mutations in trans failed. Analysis of the genomic sequence databases shows that there are copL homologs upstream of copAB genes in X. axonopodis pv. citri, X. campestris pv. campestris, and Xylella fastidiosa. The cloned promoter area upstream of copA in X. axonopodis pv. vesicatoria did not function in Pseudomonas syringae or in E. coli, nor did the P. syringae cop promoter function in Xanthomonas. However, a transcriptional fusion of the Xanthomonas cop promoter with the Pseudomonas copABCDRS was able to confer resistance to copper in Xanthomonas, showing divergence in the mechanisms of regulation of the resistance to copper in phytopathogenic bacteria.


2005 ◽  
Vol 71 (10) ◽  
pp. 5794-5804 ◽  
Author(s):  
M. Andrea Azcarate-Peril ◽  
Olivia McAuliffe ◽  
Eric Altermann ◽  
Sonja Lick ◽  
W. Michael Russell ◽  
...  

ABSTRACT Two-component regulatory systems are one primary mechanism for environmental sensing and signal transduction. Annotation of the complete genome sequence of the probiotic bacterium Lactobacillus acidophilus NCFM revealed nine two-component regulatory systems. In this study, the histidine protein kinase of a two-component regulatory system (LBA1524HPK-LBA1525RR), similar to the acid-related system lisRK from Listeria monocytogenes (P. D. Cotter et al., J. Bacteriol. 181:6840-6843, 1999), was insertionally inactivated. A whole-genome microarray containing 97.4% of the annotated genes of L. acidophilus was used to compare genome-wide patterns of transcription at various pHs between the control and the histidine protein kinase mutant. The expression pattern of approximately 80 genes was affected by the LBA1524HPK mutation. Putative LBA1525RR target loci included two oligopeptide-transport systems present in the L. acidophilus genome, other components of the proteolytic system, and a LuxS homolog, suspected of participating in synthesis of the AI-2 signaling compound. The mutant exhibited lower tolerance to acid and ethanol in logarithmic-phase cells and poor acidification rates in milk. Supplementation of milk with Casamino Acids essentially restored the acid-producing ability of the mutant, providing additional evidence for a role of this two component system in regulating proteolytic activity in L. acidophilus.


2005 ◽  
Vol 71 (12) ◽  
pp. 8284-8291 ◽  
Author(s):  
Huseyin Basim ◽  
Gerald V. Minsavage ◽  
Robert E. Stall ◽  
Jaw-Fen Wang ◽  
Savita Shanker ◽  
...  

ABSTRACT We characterized the copper resistance genes in strain XvP26 of Xanthomonas campestris pv. vesicatoria, which was originally isolated from a pepper plant in Taiwan. The copper resistance genes were localized to a 7,652-bp region which, based on pulsed-field gel electrophoresis and Southern hybridization, was determined to be located on the chromosome. These genes hybridized only weakly, as determined by Southern analysis, to other copper resistance genes in Xanthomonas and Pseudomonas strains. We identified five open reading frames (ORFs) whose products exhibited high levels of amino acid sequence identity to the products of previously reported copper genes. Mutations in ORF1, ORF3, and ORF4 removed copper resistance, whereas mutations in ORF5 resulted in an intermediate copper resistance phenotype and insertions in ORF2 had no effect on resistance conferred to a copper-sensitive recipient in transconjugant tests. Based on sequence analysis, ORF1 was determined to have high levels of identity with the CopR (66%) and PcoR (63%) genes in Pseudomonas syringae pv. tomato and Escherichia coli, respectively. ORF2 and ORF5 had high levels of identity with the PcoS gene in E. coli and the gene encoding a putative copper-containing oxidoreductase signal peptide protein in Sinorhizobium meliloti, respectively. ORF3 and ORF4 exhibited 23% identity to the gene encoding a cation efflux system membrane protein, CzcC, and 62% identity to the gene encoding a putative copper-containing oxidoreductase protein, respectively. The latter two ORFs were determined to be induced following exposure to low concentrations of copper, while addition of Co, Cd, or Zn resulted in no significant induction. PCR analysis of 51 pepper and 34 tomato copper-resistant X. campestris pv. vesicatoria strains collected from several regions in Taiwan between 1987 and 2000 and nine copper-resistant strains from the United States and South America showed that successful amplification of DNA was obtained only for strain XvP26. The organization of this set of copper resistance genes appears to be uncommon, and the set appears to occur rarely in X. campestris pv. vesicatoria.


Sign in / Sign up

Export Citation Format

Share Document