scholarly journals Altered transcription activation specificity of a mutant form of Bacillus subtilis GltR, a LysR family member.

1997 ◽  
Vol 179 (4) ◽  
pp. 1035-1043 ◽  
Author(s):  
B R Belitsky ◽  
A L Sonenshein
2010 ◽  
Vol 192 (13) ◽  
pp. 3452-3463 ◽  
Author(s):  
Nicole M. Dupes ◽  
Brian W. Walsh ◽  
Andrew D. Klocko ◽  
Justin S. Lenhart ◽  
Heather L. Peterson ◽  
...  

ABSTRACT The β clamp is an essential replication sliding clamp required for processive DNA synthesis. The β clamp is also critical for several additional aspects of DNA metabolism, including DNA mismatch repair (MMR). The dnaN5 allele of Bacillus subtilis encodes a mutant form of β clamp containing the G73R substitution. Cells with the dnaN5 allele are temperature sensitive for growth due to a defect in DNA replication at 49°C, and they show an increase in mutation frequency caused by a partial defect in MMR at permissive temperatures. We selected for intragenic suppressors of dnaN5 that rescued viability at 49°C to determine if the DNA replication defect could be separated from the MMR defect. We isolated three intragenic suppressors of dnaN5 that restored growth at the nonpermissive temperature while maintaining an increase in mutation frequency. All three dnaN alleles encoded the G73R substitution along with one of three novel missense mutations. The missense mutations isolated were S22P, S181G, and E346K. Of these, S181G and E346K are located near the hydrophobic cleft of the β clamp, a common site occupied by proteins that bind the β clamp. Using several methods, we show that the increase in mutation frequency resulting from each dnaN allele is linked to a defect in MMR. Moreover, we found that S181G and E346K allowed growth at elevated temperatures and did not have an appreciable effect on mutation frequency when separated from G73R. Thus, we found that specific residue changes in the B. subtilis β clamp separate the role of the β clamp in DNA replication from its role in MMR.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mario Frezzini ◽  
Leonardo Guidoni ◽  
Stefano Pascarella

AbstractGabR from Bacillus subtilis is a transcriptional regulator of the MocR subfamily of GntR regulators. The MocR architecture is characterized by the presence of an N-terminal winged-Helix-Turn-Helix domain and a C-terminal domain folded as the pyridoxal 5′-phosphate (PLP) dependent aspartate aminotransferase (AAT). The two domains are linked by a peptide bridge. GabR activates transcription of genes involved in γ-amino butyrate (GABA) degradation upon binding of PLP and GABA. This work is aimed at contributing to the understanding of the molecular mechanism underlying the GabR transcription activation upon GABA binding. To this purpose, the structure of the entire GabR dimer with GABA external aldimine (holo-GABA) has been reconstructed using available crystallographic data. The structure of the apo (without any ligand) and holo (with PLP) GabR forms have been derived from the holo-GABA. An extensive 1 μs comparative molecular dynamics (MD) has been applied to the three forms. Results showed that the presence of GABA external aldimine stiffens the GabR, stabilizes the AAT domain in the closed form and couples the AAT and HTH domains dynamics. Apo and holo GabR appear more flexible especially at the level of the HTH and linker portions and small AAT subdomain.


2004 ◽  
Vol 279 (19) ◽  
pp. 20356-20362 ◽  
Author(s):  
Kate J. Newberry ◽  
Richard G. Brennan

Transcription regulators of the MerR family respond to myriad stress signals to activate σ70/σA-targeted genes, which contain suboptimal 19-bp spacers between their -35 and -10 promoter elements. The crystal structure of a BmrR-TPP+-DNA complex provided initial insight into the transcription activation mechanism of the MerR family, which involves base pair distortion, DNA undertwisting and shortening of the spacer, and realignment of the -35 and -10 boxes. Here, we describe the crystal structure of MerR family member MtaN bound to themtapromoter. Although the global DNA binding modes of MtaN and BmrR differ somewhat, homologous protein-DNA interactions are maintained. Moreover, despite their different sequences, themtapromoter conformation is essentially identical to that of the BmrR-TPP+-boundbmrpromoter, indicating that this DNA distortion mechanism is common to the entire MerR family. Interestingly, DNA binding experiments reveal that the identity of the two central bases of themtaandbmrpromoters, which are conserved as either a thymidine or an adenine in nearly all MerR promoters, is not important for DNA affinity. Comparison of the free and DNA-bound MtaN structures reveals that a conformational hinge, centered at residues N-terminal to the ubiquitous coiled coil, is key formtapromoter binding. Analysis of the structures of BmrR, CueR, and ZntR indicates that this hinge may be common to all MerR family members.


Structure ◽  
1997 ◽  
Vol 5 (8) ◽  
pp. 1017-1032 ◽  
Author(s):  
Richard Tyrrell ◽  
Koen HG Verschueren ◽  
Eleanor J Dodson ◽  
Garib N Murshudov ◽  
Christine Addy ◽  
...  

AMB Express ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhile Xiong ◽  
Jialiang Mai ◽  
Fei Li ◽  
Bingshao Liang ◽  
Shuwen Yao ◽  
...  

AbstractPathogenicity of Staphylococcus aureus is induced by staphylococcal enterotoxin B (SEB). A mutant form of SEB (mSEB) is immunogenic as well as less toxic. Recombinant mSEB and SEB were expressed in pET28a prokaryotic plasmids. Tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels in mSEB-stimulated macrophages were lower than those in SEB-stimulated macrophages (p < 0.001, p < 0.01 respectively). Using CotC as a fusion protein, we constructed recombinant Bacillus subtilis spores expressing mSEB on the spore surface and evaluated their safety and protective efficacy via mouse models. Oral administration of mSEB-expressing spores increased SEB-specific IgA in feces and SEB-specific IgG1 and IgG2a in the sera, compared with mice in naïve and CotC spore-treated groups (p < 0.001, p < 0.01, p < 0.001 respectively). Six weeks following oral dosing of recombinant spores, significant differences were not found in the serum biochemical indices between the mSEB group and the naïve and CotC groups. Furthermore, oral administration of mSEB spores increased the survival rate by 33.3% in mice intraperitoneally injected with 5 µg of wild-type SEB plus 25 µg lipopolysaccharide (LPS). In summation, recombinant spores stably expressing mSEB were developed, and oral administration of such recombinant spores induced a humoral immune response and provided protection against SEB challenge in mice.


1999 ◽  
Vol 181 (11) ◽  
pp. 3382-3391 ◽  
Author(s):  
Kiyoshi Matsuno ◽  
Tessa Blais ◽  
Alisa W. Serio ◽  
Tyrrell Conway ◽  
Tina M. Henkin ◽  
...  

ABSTRACT A Bacillus subtilis mutant with a deletion in thecitC gene, encoding isocitrate dehydrogenase, the third enzyme of the tricarboxylic acid branch of the Krebs cycle, exhibited reduced growth yield in broth medium and had greatly reduced ability to sporulate compared to the wild type due to a block at stage I, i.e., a failure to form the polar division septum. In early stationary phase, mutant cells accumulated intracellular and extracellular concentrations of citrate and isocitrate that were at least 15-fold higher than in wild-type cells. The growth and sporulation defects of the mutant could be partially bypassed by deletion of the major citrate synthase gene (citZ), by raising the pH of the medium, or by supplementation of the medium with certain divalent cations, suggesting that abnormal accumulation of citrate affects survival of stationary-phase cells and sporulation by lowering extracellular pH and chelating metal ions. While these genetic and environmental alterations were not sufficient to allow the majority of the mutant cell population to pass the stage I block (lack of asymmetric septum formation), introduction of the sof-1 mutant form of the Spo0A transcription factor, when coupled with a reduction in citrate synthesis, restored sporulation gene expression and spore formation nearly to wild-type levels. Thus, the primary factor inhibiting sporulation in a citC mutant is abnormally high accumulation of citrate, but relief of this metabolic defect is not by itself sufficient to restore competence for sporulation.


2005 ◽  
Vol 187 (7) ◽  
pp. 2532-2536 ◽  
Author(s):  
Brett N. McLeod ◽  
George B. Spiegelman

ABSTRACT The ParA family protein Soj appears to negatively regulate sporulation in Bacillus subtilis by inhibiting transcription from promoters that are activated by phosphorylated Spo0A. We tested in vitro Soj inhibition of Spo0A-independent variants of a promoter that Soj inhibited (PspoIIG). Transcription from the variants was less sensitive to Soj inhibition, suggesting that inhibition of wild-type PspoIIG was linked to transcription activation by Spo0A.


2000 ◽  
Vol 182 (15) ◽  
pp. 4352-4355 ◽  
Author(s):  
Dean A. Rowe-Magnus ◽  
Martin J. Richer ◽  
George B. Spiegelman

ABSTRACT Deletion of the 10 C-terminal amino acids of the Bacillus subtilis response regulator Spo0A or valine substitution at D258 and L260 resulted in a sporulation-negative phenotype and loss of in vivo activation of the spoIIG and spoIIA operon promoters. Repression of the abrB promoter was not affected by the mutations. In combination with the previously characterized mutation (A257V), the results identify amino acids at positions 257, 258, and 260 as being required for transcription activation by Spo0A.


2004 ◽  
Vol 186 (4) ◽  
pp. 1120-1128 ◽  
Author(s):  
K. A. Susanna ◽  
A. F. van der Werff ◽  
C. D. den Hengst ◽  
B. Calles ◽  
M. Salas ◽  
...  

ABSTRACT The development of genetic competence in Bacillus subtilis is regulated by a complex signal transduction cascade, which results in the synthesis of the competence transcription factor, encoded by comK. ComK is required for the transcription of the late competence genes that encode the DNA binding and uptake machinery and of genes required for homologous recombination. In vivo and in vitro experiments have shown that ComK is responsible for transcription activation at the comG promoter. In this study, we investigated the mechanism of this transcription activation. The intrinsic binding characteristics of RNA polymerase with and without ComK at the comG promoter were determined, demonstrating that ComK stabilizes the binding of RNA polymerase to the comG promoter. This stabilization probably occurs through interactions with the upstream DNA, since a deletion of the upstream DNA resulted in an almost complete abolishment of stabilization of RNA polymerase binding. Furthermore, a strong requirement for the presence of an extra AT box in addition to the common ComK-binding site was shown. In vitro transcription with B. subtilis RNA polymerase reconstituted with wild-type α-subunits and with C-terminal deletion mutants of the α-subunits was performed, demonstrating that these deletions do not abolish transcription activation by ComK. This indicates that ComK is not a type I activator. We also show that ComK is not required for open complex formation. A possible mechanism for transcription activation is proposed, implying that the major stimulatory effect of ComK is on binding of RNA polymerase.


Sign in / Sign up

Export Citation Format

Share Document