scholarly journals Mechanism of Transcription Activation at the comG Promoter by the Competence Transcription Factor ComK of Bacillus subtilis

2004 ◽  
Vol 186 (4) ◽  
pp. 1120-1128 ◽  
Author(s):  
K. A. Susanna ◽  
A. F. van der Werff ◽  
C. D. den Hengst ◽  
B. Calles ◽  
M. Salas ◽  
...  

ABSTRACT The development of genetic competence in Bacillus subtilis is regulated by a complex signal transduction cascade, which results in the synthesis of the competence transcription factor, encoded by comK. ComK is required for the transcription of the late competence genes that encode the DNA binding and uptake machinery and of genes required for homologous recombination. In vivo and in vitro experiments have shown that ComK is responsible for transcription activation at the comG promoter. In this study, we investigated the mechanism of this transcription activation. The intrinsic binding characteristics of RNA polymerase with and without ComK at the comG promoter were determined, demonstrating that ComK stabilizes the binding of RNA polymerase to the comG promoter. This stabilization probably occurs through interactions with the upstream DNA, since a deletion of the upstream DNA resulted in an almost complete abolishment of stabilization of RNA polymerase binding. Furthermore, a strong requirement for the presence of an extra AT box in addition to the common ComK-binding site was shown. In vitro transcription with B. subtilis RNA polymerase reconstituted with wild-type α-subunits and with C-terminal deletion mutants of the α-subunits was performed, demonstrating that these deletions do not abolish transcription activation by ComK. This indicates that ComK is not a type I activator. We also show that ComK is not required for open complex formation. A possible mechanism for transcription activation is proposed, implying that the major stimulatory effect of ComK is on binding of RNA polymerase.

2004 ◽  
Vol 186 (5) ◽  
pp. 1493-1502 ◽  
Author(s):  
Yinghua Chen ◽  
Wael R. Abdel-Fattah ◽  
F. Marion Hulett

ABSTRACT Bacillus subtilis PhoP is a member of the OmpR family of response regulators that activates or represses genes of the Pho regulon upon phosphorylation by PhoR in response to phosphate deficiency. Because PhoP binds DNA and is a dimer in solution independent of its phosphorylation state, phosphorylation of PhoP may optimize DNA binding or the interaction with RNA polymerase. We describe alanine scanning mutagenesis of the PhoP α loop and α helix 3 region of PhoPC (Val190 to E214) and functional analysis of the mutated proteins. Eight residues important for DNA binding were clustered between Val202 and Arg210. Using in vivo and in vitro functional analyses, we identified three classes of mutated proteins. Class I proteins (PhoPI206A, PhoPR210A, PhoPL209A, and PhoPH208A) were phosphorylation proficient and could dimerize but could not bind DNA or activate transcription in vivo or in vitro. Class II proteins (PhoPH205A and PhoPV204A) were phosphorylation proficient and could dimerize but could not bind DNA prior to phosphorylation. Members of this class had higher transcription activation in vitro than in vivo. The class III mutants, PhoPV202A and PhoPD203A, had a reduced rate of phosphotransfer and could dimerize but could not bind DNA or activate transcription in vivo or in vitro. Seven alanine substitutions in PhoP (PhoPV190A, PhoPW191A, PhoPY193A, PhoPF195A, PhoPG197A, PhoPT199A, and PhoPR200A) that specifically affected transcription activation were broadly distributed throughout the transactivation loop extending from Val190 to as far toward the C terminus as Arg200. PhoPW191A and PhoPR200A could not activate transcription, while the other five mutant proteins showed decreased transcription activation in vivo or in vitro or both. The mutagenesis studies may indicate that PhoP has a long transactivation loop and a short α helix 3, more similar to OmpR than to PhoB of Escherichia coli.


2001 ◽  
Vol 183 (6) ◽  
pp. 1921-1927 ◽  
Author(s):  
Jian Qiu ◽  
John D. Helmann

ABSTRACT Transcriptional selectivity derives, in large part, from the sequence-specific DNA-binding properties of the ς subunit of RNA polymerase. There are 17 ς factors in Bacillus subtilis which, in general, recognize distinct sets of promoters. However, some ς factors have overlapping promoter selectivity. We hypothesize that the overlap between the regulons activated by the ςX and ςW factors can be explained by overlapping specificity for the −10 region: ςX recognizes −10 elements with the sequence CGAC and ςW recognizes CGTA, while both can potentially recognize CGTC. To test this model, we mutated the ςX-specific autoregulatory site (PX), containing the −10 element CGAC, to either CGTC or GCTA. Conversely, the ςW autoregulatory site (PW) was altered from CGTA to CGTC or CGAC. Transcriptional analyses, both in vitro and in vivo, indicate that changes to the −10 element are sufficient to switch a promoter from the ςX to the ςW regulon or, conversely, from the ςW to the ςX regulon, but context effects clearly play an important role in determining promoter strength. It seems likely that these subtle differences in promoter selectivity derive from amino acid differences in conserved region 2 of ς, which contacts the −10 element. However, we were unable to alter promoter selectivity by replacements of two candidate recognition residues in ςW.


1996 ◽  
Vol 16 (5) ◽  
pp. 2350-2360 ◽  
Author(s):  
E F Michelotti ◽  
G A Michelotti ◽  
A I Aronsohn ◽  
D Levens

The CT element is a positively acting homopyrimidine tract upstream of the c-myc gene to which the well-characterized transcription factor Spl and heterogeneous nuclear ribonucleoprotein (hnRNP) K, a less well-characterized protein associated with hnRNP complexes, have previously been shown to bind. The present work demonstrates that both of these molecules contribute to CT element-activated transcription in vitro. The pyrimidine-rich strand of the CT element both bound to hnRNP K and competitively inhibited transcription in vitro, suggesting a role for hnRNP K in activating transcription through this single-stranded sequence. Direct addition of recombinant hnRNP K to reaction mixtures programmed with templates bearing single-stranded CT elements increased specific RNA synthesis. If hnRNP K is a transcription factor, then interactions with the RNA polymerase II transcription apparatus are predicted. Affinity columns charged with recombinant hnRNP K specifically bind a component(s) necessary for transcription activation. The depleted factors were biochemically complemented by a crude TFIID phosphocellulose fraction, indicating that hnRNP K might interact with the TATA-binding protein (TBP)-TBP-associated factor complex. Coimmunoprecipitation of a complex formed in vivo between hnRNP K and epitope-tagged TBP as well as binding in vitro between recombinant proteins demonstrated a protein-protein interaction between TBP and hnRNP K. Furthermore, when the two proteins were overexpressed in vivo, transcription from a CT element-dependent reporter was synergistically activated. These data indicate that hnRNP K binds to a specific cis element, interacts with the RNA polymerase II transcription machinery, and stimulates transcription and thus has all of the properties of a transcription factor.


2009 ◽  
Vol 83 (23) ◽  
pp. 12018-12026 ◽  
Author(s):  
Zhilong Yang ◽  
Bernard Moss

ABSTRACT A multisubunit RNA polymerase (RPO) encoded by vaccinia virus (VACV), in conjunction with specific factors, transcribes early, intermediate, and late viral genes. However, an additional virus-encoded polypeptide referred to as the RPO-associated protein of 94 kDa (RAP94) is tightly bound to the RPO for the transcription of early genes. Unlike the eight RPO core subunits, RAP94 is synthesized exclusively at late times after infection. Furthermore, RAP94 is necessary for the packaging of RPO and other components needed for early transcription in assembling virus particles. The direct association of RAP94 with NPH I, a DNA-dependent ATPase required for transcription termination, and the multifunctional poly(A) polymerase small subunit/2′-O-methyltransferase/elongation factor was previously demonstrated. That RAP94 provides a structural and functional link between the core RPO and the VACV early transcription factor (VETF) has been suspected but not previously demonstrated. Using VACV recombinants that constitutively or inducibly express VETF subunits and RAP94 with affinity tags, we showed that (i) VETF associates only with RPO containing RAP94 in vivo and in vitro, (ii) the association of RAP94 with VETF requires both subunits of the latter, (iii) neither viral DNA nor other virus-encoded late proteins are required for the interaction of RAP94 with VETF and core RPO subunits, (iv) different domains of RAP94 bind VETF and core subunits of RPO, and (v) NPH I and VETF bind independently and possibly simultaneously to the N-terminal region of RAP94. Thus, RAP94 provides the bridge between the RPO and proteins needed for transcription initiation, elongation, and termination.


2006 ◽  
Vol 400 (1) ◽  
pp. 115-125 ◽  
Author(s):  
Bryan D. Griffin ◽  
Paul N. Moynagh

Despite certain structural and biochemical similarities, differences exist in the function of the NF-κB (nuclear factor κB) inhibitory proteins IκBα (inhibitory κBα) and IκBβ. The functional disparity arises in part from variance at the level of gene regulation, and in particular from the substantial induction of IκBα, but not IκBβ, gene expression post-NF-κB activation. In the present study, we probe the differential effects of IL (interleukin)-1β on induction of IκBα and perform the first characterization of the human IκBβ promoter. A consensus NF-κB-binding site, capable of binding NF-κB both in vitro and in vivo, is found in the IκBβ gene 5′ flanking region. However, the IκBβ promoter was not substantially activated by pro-inflammatory cytokines, such as IL-1β and tumour necrosis factor α, that are known to cause strong activation of NF-κB. Furthermore, in contrast with IκBα, NF-κB activation did not increase expression of endogenous IκBβ as assessed by analysis of mRNA and protein levels. Unlike κB-responsive promoters, IκBβ promoter-bound p65 inefficiently recruits RNA polymerase II, which stalls at the promoter. We present evidence that this stalling is likely due to the absence of transcription factor IIH engagement, a prerequisite for RNA polymerase II phosphorylation and transcriptional initiation. Differences in the conformation of promoter-bound NF-κB may underlie the variation in the ability to engage the basal transcriptional apparatus at the IκBβ and κB-responsive promoters. This accounts for the differential expression of IκB family members in response to NF-κB activation and furthers our understanding of the mechanisms involved in transcription factor activity and IκBβ gene regulation.


2021 ◽  
pp. 1-9
Author(s):  
Huei-Ying Chen ◽  
Joseph F. Bohlen ◽  
Brady J. Maher

Transcription factor 4 (TCF4, also known as ITF2 or E2-2) is a type I basic helix-loop-helix transcription factor. Autosomal dominant mutations in TCF4 cause Pitt-Hopkins syndrome (PTHS), a rare syndromic form of autism spectrum disorder. In this review, we provide an update on the progress regarding our understanding of TCF4 function at the molecular, cellular, physiological, and behavioral levels with a focus on phenotypes and therapeutic interventions. We examine upstream and downstream regulatory networks associated with TCF4 and discuss a range of in vitro and in vivo data with the aim of understanding emerging TCF4-specific mechanisms relevant for disease pathophysiology. In conclusion, we provide comments about exciting future avenues of research that may provide insights into potential new therapeutic targets for PTHS.


2021 ◽  
Author(s):  
Jixu Wang ◽  
Futao Hou ◽  
Lusheng Tang ◽  
Ke Xiao ◽  
Tengfei Yang ◽  
...  

Abstract Background: An increasing number of studies have demonstrated that long non-coding RNAs (lncRNAs) serve as key regulators in tumor development and progression. However, only a few lncRNAs have been functionally characterized in gastric cancer (GC). Methods: Bioinformatics analysis was conducted to find lncRNAs that are associated with GC metastasis. RNA FISH, RIP, and RNA pull down assays were used to study the complementary binding of LINC01564 complementary to the 3’UTR of transcription factor POU2F1. The transcription activation of LINC01564 by POU2F1 as a transcription factor was examined by ChIP assay. In vitro assays such as MTT, cell invasion assay, and clonogenic assay were conducted to examined the impacts of LINC01564 and POU2F1 on GC cell proliferation and invasion. Experiments in vivo were performed to access the impacts of LINC01564 and POU2F1 on GC metastasis. Results: The results showed that LINC01564 complementary bound to the 3’UTR of POU2F1 to form an RNA duplex, whereby stabilizing POU2F1 mRNA and increasing the enrichment in cells. The level of LINC01564 was also increased by POU2F1 through transcription activation. In vitro assays showed that LINC01564 promoted the proliferation, invasion and migration of GC cells through increasing POU2F1. In vivo experiments indicate the promotion of GC proliferation and metastasis by the interaction between LINC01564 and POU2F1. Conclusion: Taken together, our results indicate that the interaction between LINC01564 and POU2F1 promotes the proliferation, migration and invasion of GC cells.


2016 ◽  
Vol 36 (8) ◽  
pp. 1297-1309 ◽  
Author(s):  
Tomohiro Kayama ◽  
Masaki Mori ◽  
Yoshiaki Ito ◽  
Takahide Matsushima ◽  
Ryo Nakamichi ◽  
...  

Mechanoforces experienced by an organ are translated into biological information for cellular sensing and response. In mammals, the tendon connective tissue experiences and resists physical forces, with tendon-specific mesenchymal cells called tenocytes orchestrating extracellular matrix (ECM) turnover. We show that Mohawk (Mkx), a tendon-specific transcription factor, is essential in mechanoresponsive tenogenesis through regulation of its downstream ECM genes such as type I collagens and proteoglycans such as fibromodulin bothin vivoandin vitro. Wild-type (WT) mice demonstrated an increase in collagen fiber diameter and density in response to physical treadmill exercise, whereas inMkx−/−mice, tendons failed to respond to the same mechanical stimulation. Furthermore, functional screening of theMkxpromoter region identified several upstream transcription factors that regulateMkx. In particular, general transcription factor II-I repeat domain-containing protein 1 (Gtf2ird1) that is expressed in the cytoplasm of unstressed tenocytes translocated into the nucleus upon mechanical stretching to activate theMkxpromoter through chromatin regulation. Here, we demonstrate thatGtf2ird1is essential forMkxtranscription, while also linking mechanical forces toMkx-mediated tendon homeostasis and regeneration.


Sign in / Sign up

Export Citation Format

Share Document