scholarly journals Soj Antagonizes Spo0A Activation of Transcription in Bacillus subtilis

2005 ◽  
Vol 187 (7) ◽  
pp. 2532-2536 ◽  
Author(s):  
Brett N. McLeod ◽  
George B. Spiegelman

ABSTRACT The ParA family protein Soj appears to negatively regulate sporulation in Bacillus subtilis by inhibiting transcription from promoters that are activated by phosphorylated Spo0A. We tested in vitro Soj inhibition of Spo0A-independent variants of a promoter that Soj inhibited (PspoIIG). Transcription from the variants was less sensitive to Soj inhibition, suggesting that inhibition of wild-type PspoIIG was linked to transcription activation by Spo0A.

2008 ◽  
Vol 190 (14) ◽  
pp. 5132-5136 ◽  
Author(s):  
Jeffrey G. Gardner ◽  
Jorge C. Escalante-Semerena

ABSTRACT The acuABC genes of Bacillus subtilis comprise a putative posttranslational modification system. The AcuA protein is a member of the Gcn5-related N-acetyltransferase (GNAT) superfamily, the AcuC protein is a class I histone deacetylase, and the role of the AcuB protein is not known. AcuA controls the activity of acetyl coenzyme A synthetase (AcsA; EC 6.2.1.1) in this bacterium by acetylating residue Lys549. Here we report the kinetic analysis of wild-type and variant AcuA proteins. We contrived a genetic scheme for the identification of AcuA residues critical for activity. Changes at residues H177 and G187 completely inactivated AcuA and led to its rapid turnover. Changes at residues R42 and T169 were less severe. In vitro assay conditions were optimized, and an effective means of inactivating the enzyme was found. The basic kinetic parameters of wild-type and variant AcuA proteins were obtained and compared to those of eukaryotic GNATs. Insights into how the isolated mutations may exert their deleterious effect were investigated by using the crystal structure of an AcuA homolog.


2022 ◽  
Author(s):  
Christopher Dennison ◽  
Jaeick Lee

A family of cytosolic copper (Cu) storage proteins (the Csps) are widespread in bacteria. The Csps can bind large quantities of Cu(I) via their Cys-lined four-helix bundles, and the majority are cytosolic (Csp3s). This is inconsistent with the current dogma that bacteria, unlike eukaryotes, have evolved not to maintain intracellular pools of Cu due to its potential toxicity. Sporulation in Bacillus subtilis has been used to investigate if a Csp3 can store Cu(I) in the cytosol for a target enzyme. The activity of the Cu-requiring endospore multi-Cu oxidase BsCotA (a laccase) increases under Cu-replete conditions in wild type B. subtilis, but not in the strain lacking BsCsp3. Cuprous ions readily transfer from BsCsp3, but not from the cytosolic copper metallochaperone BsCopZ, to BsCotA in vitro producing active enzyme. Both BsCsp3 and BsCotA are upregulated during late sporulation. The hypothesis we propose is that BsCsp3 acquires and stores Cu(I) in the cytosol for BsCotA.


2019 ◽  
Vol 47 (13) ◽  
pp. 6885-6899 ◽  
Author(s):  
Julia E Martin ◽  
My T Le ◽  
Nabin Bhattarai ◽  
Daiana A Capdevila ◽  
Jiangchuan Shen ◽  
...  

Abstract Maintaining manganese (Mn) homeostasis is important for the virulence of numerous bacteria. In the human respiratory pathogen Streptococcus pneumoniae, the Mn-specific importer PsaBCA, exporter MntE, and transcriptional regulator PsaR establish Mn homeostasis. In other bacteria, Mn homeostasis is controlled by yybP-ykoY family riboswitches. Here, we characterize a yybP-ykoY family riboswitch upstream of the mgtA gene encoding a PII-type ATPase in S. pneumoniae, suggested previously to function in Ca2+ efflux. We show that the mgtA riboswitch aptamer domain adopts a canonical yybP-ykoY structure containing a three-way junction that is compacted in the presence of Ca2+ or Mn2+ at a physiological Mg2+ concentration. Although Ca2+ binds to the RNA aptamer with higher affinity than Mn2+, in vitro activation of transcription read-through of mgtA by Mn2+ is much greater than by Ca2+. Consistent with this result, mgtA mRNA and protein levels increase ≈5-fold during cellular Mn stress, but only in genetic backgrounds of S. pneumoniae and Bacillus subtilis that exhibit Mn2+ sensitivity, revealing that this riboswitch functions as a failsafe ‘on’ signal to prevent Mn2+ toxicity in the presence of high cellular Mn2+. In addition, our results suggest that the S. pneumoniae yybP-ykoY riboswitch functions to regulate Ca2+ efflux under these conditions.


Development ◽  
1994 ◽  
Vol 120 (12) ◽  
pp. 3595-3603 ◽  
Author(s):  
C.V. Cabrera ◽  
M.C. Alonso ◽  
H. Huikeshoven

The pattern of adult sensilla in Drosophila is established by the dosage-sensitive interaction of two antagonistic groups of genes. Sensilla development is promoted by members of the achaete-scute complex and the daughterless gene whereas it is suppressed by whereas extramacrochaete (emc) and hairy. All these genes encode helix-loop-helix proteins. The products of the achaete-scute complex and daughterless interact to form heterodimers able to activate transcription. In this report, we show that (1) extra-macrochaete forms heterodimers with the achaete, scute, lethal of scute and daughterless products; (2) extramacrochaete inhibits DNA-binding of Achaete, Scute and Lethal of Scute/Daughterless heterodimers and Daughterless homodimers and (3) extramacrochaete inhibits transcription activation by heterodimers in a yeast assay system. In addition, we have studied the expression patterns of scute in wild-type and extramacrochaete mutant imaginal discs. Expression of scute RNA during imaginal development occurs in groups of cells, but high levels of protein accumulate in the nuclei of only a subset of the RNA-expressing cells. The pattern is dynamic and results in a small number of protein-containing cells that correspond to sensillum precursors. extramacrochaete loss-of-function alleles develop extra sensilla and correspondingly display a larger number of cells with scute protein. These cells appear to arise from those that in the wild type already express scute RNA; hence, extramacrochaete is a repressor of scute function whose action may take place post-transcriptionally.


2005 ◽  
Vol 187 (15) ◽  
pp. 5166-5178 ◽  
Author(s):  
Wael R. Abdel-Fattah ◽  
Yinghua Chen ◽  
Amr Eldakak ◽  
F. Marion Hulett

ABSTRACT The phoB gene of Bacillus subtilis encodes an alkaline phosphatase (PhoB, formerly alkaline phosphatase III) that is expressed from separate promoters during phosphate deprivation in a PhoP-PhoR-dependent manner and at stage two of sporulation under phosphate-sufficient conditions independent of PhoP-PhoR. Isogenic strains containing either the complete phoB promoter or individual phoB promoter fusions were used to assess expression from each promoter under both induction conditions. The phoB promoter responsible for expression during sporulation, phoB-PS, was expressed in a wild-type strain during phosphate deprivation, but induction occurred >3 h later than induction of Pho regulon genes and the levels were approximately 50-fold lower than that observed for the PhoPR-dependent promoter, phoB-PV. EσE was necessary and sufficient for PS expression in vitro. PS expression in a phoPR mutant strain was delayed 2 to 3 h compared to the expression in a wild-type strain, suggesting that expression or activation of σE is delayed in a phoPR mutant under phosphate-deficient conditions, an observation consistent with a role for PhoPR in spore development under these conditions. Phosphorylated PhoP (PhoP∼P) repressed PS in vitro via direct binding to the promoter, the first example of an EσE-responsive promoter that is repressed by PhoP∼P. Whereas either PhoP or PhoP∼P in the presence of EσA was sufficient to stimulate transcription from the phoB-PV promoter in vitro, roughly 10- and 17-fold-higher concentrations of PhoP than of PhoP∼P were required for PV promoter activation and maximal promoter activity, respectively. The promoter for a second gene in the Pho regulon, ykoL, was also activated by elevated concentrations of unphosphorylated PhoP in vitro. However, because no Pho regulon gene expression was observed in vivo during Pi -replete growth and PhoP concentrations increased only threefold in vivo during phoPR autoinduction, a role for unphosphorylated PhoP in Pho regulon activation in vivo is not likely.


2002 ◽  
Vol 184 (13) ◽  
pp. 3664-3670 ◽  
Author(s):  
Shunji Nakano ◽  
Guolu Zheng ◽  
Michiko M. Nakano ◽  
Peter Zuber

ABSTRACT ATP-dependent proteases degrade denatured or misfolded proteins and are recruited for the controlled removal of proteins that block activation of regulatory pathways. Among the ATP-dependent proteases, those of the Clp family are particularly important for the growth and development of Bacillus subtilis. Proteolytic subunit ClpP, together with regulatory ATPase subunit ClpC or ClpX, is required for the normal response to stress, for development of genetic competence, and for sporulation. The spx (formally yjbD) gene was previously identified as a site of mutations that suppress defects in competence conferred by clpP and clpX. The level of Spx in wild-type cells grown in competence medium is low, and that in clpP mutants is high. This suggests that the Spx protein is a substrate for ClpP-containing proteases and that accumulation of Spx might be partly responsible for the observed pleiotropic phenotype resulting from the clpP mutation. In this study we examined, both in vivo and in vitro, which ClpP protease is responsible for degradation of Spx. Western blot analysis showed that Spx accumulated in clpX mutant to the same level as that observed in the clpP mutant. In contrast, a very low concentration of Spx was detected in a clpC mutant. An in vitro proteolysis experiment using purified proteins demonstrated that Spx was degraded by ClpCP but only in the presence of one of the ClpC adapter proteins, MecA or YpbH. However, ClpXP, either in the presence or in the absence of MecA and YpbH, was unable to degrade Spx. Transcription of spx, as measured by expression of spx-lacZ, was slightly increased by the clpX mutation. To exclude a possible effect of clpX and clpP on spx transcription, the spx gene was placed under the control of the IPTG (isopropyl-β-d-thiogalactopyranoside)-inducible Pspac promoter. In this strain, Spx accumulated when ClpX or ClpP was absent, suggesting that ClpX and ClpP are required for degradation of Spx. Taken together, these results suggest that Spx is degraded by both ClpCP and ClpXP. The putative proteolysis by ClpXP might require another adapter protein. Spx probably is degraded by ClpCP under as yet unidentified conditions. This study suggests that the level of Spx is tightly controlled by two different ClpP proteases.


2004 ◽  
Vol 186 (4) ◽  
pp. 1120-1128 ◽  
Author(s):  
K. A. Susanna ◽  
A. F. van der Werff ◽  
C. D. den Hengst ◽  
B. Calles ◽  
M. Salas ◽  
...  

ABSTRACT The development of genetic competence in Bacillus subtilis is regulated by a complex signal transduction cascade, which results in the synthesis of the competence transcription factor, encoded by comK. ComK is required for the transcription of the late competence genes that encode the DNA binding and uptake machinery and of genes required for homologous recombination. In vivo and in vitro experiments have shown that ComK is responsible for transcription activation at the comG promoter. In this study, we investigated the mechanism of this transcription activation. The intrinsic binding characteristics of RNA polymerase with and without ComK at the comG promoter were determined, demonstrating that ComK stabilizes the binding of RNA polymerase to the comG promoter. This stabilization probably occurs through interactions with the upstream DNA, since a deletion of the upstream DNA resulted in an almost complete abolishment of stabilization of RNA polymerase binding. Furthermore, a strong requirement for the presence of an extra AT box in addition to the common ComK-binding site was shown. In vitro transcription with B. subtilis RNA polymerase reconstituted with wild-type α-subunits and with C-terminal deletion mutants of the α-subunits was performed, demonstrating that these deletions do not abolish transcription activation by ComK. This indicates that ComK is not a type I activator. We also show that ComK is not required for open complex formation. A possible mechanism for transcription activation is proposed, implying that the major stimulatory effect of ComK is on binding of RNA polymerase.


Microbiology ◽  
2006 ◽  
Vol 152 (2) ◽  
pp. 473-483 ◽  
Author(s):  
Kim A. Susanna ◽  
Fabrizia Fusetti ◽  
Andy-Mark W. H. Thunnissen ◽  
Leendert W. Hamoen ◽  
Oscar P. Kuipers

The competence transcription factor ComK is the master regulator of competence development in Bacillus subtilis. In the regulatory pathway, ComK is involved in different interactions: (i) protein–DNA interactions to stimulate transcription of ComK-dependent genes and (ii) protein–protein interactions, divided into interactions with other proteins and interactions between ComK proteins involving oligomerization. The fact that ComK displays different types of interactions suggests the presence of specific, distinct domains in the protein. This paper describes a search for functional domains, by constructing ComK truncation variants, which were tested for DNA binding, oligomerization and transcription activation. Truncations at the C-terminal end of ComK demonstrated the requirement of this part for transcription activation, but not for DNA binding. The C-terminal region is probably involved in oligomerization of ComK-dimers into tetramers. Surprisingly, a ComK truncation variant lacking 9 aa from the N-terminal end (ΔN9ComK) showed higher transcription activation than wild-type ComK, when expressed in Lactococcus lactis. However, in B. subtilis, transcription activation by ΔN9ComK was twofold lower than that by wild-type ComK, resulting from a five- to sixfold lower protein level of ComKΔN9. Thus, relatively, ΔN9ComK is more active in transcription activation than wild-type ComK. These results suggest that the presence of this N-terminal extension on ComK is a trade-off between high transcription activation and a thus far unidentified role in regulation of ComK.


1998 ◽  
Vol 72 (11) ◽  
pp. 9217-9223 ◽  
Author(s):  
Atze T. Das ◽  
Bep Klaver ◽  
Ben Berkhout

ABSTRACT The human immunodeficiency virus type 1 RNA genome contains a terminal repeat (R) sequence that encodes the TAR hairpin motif, which has been implicated in Tat-mediated activation of transcription. More recently, a variety of other functions have been proposed for this structured RNA element. To determine the replicative roles of the 5′ and 3′ TAR hairpins, we analyzed multiple steps in the life cycle of wild-type and mutant viruses. A structure-destabilizing mutation was introduced in either the 5′, the 3′, or both TAR motifs of the proviral genome. As expected, opening of the 5′ TAR hairpin caused a transcription defect. Because the level of protein expression was not similarly reduced, the translation of this mRNA was improved. No effect of the 3′ hairpin on transcription and translation was measured. Mutations of the 5′ and 3′ hairpin structures reduced the efficiency of RNA packaging to similar extents, and RNA packaging was further reduced in the 5′ and 3′ TAR double mutant. Upon infection of cells with these virions, a reduced amount of reverse transcription products was synthesized by the TAR mutant. However, no net reverse transcription defect was observed after correction for the reduced level of virion RNA. This result was confirmed in in vitro reverse transcription assays. These data indicate that the 5′ and 3′ TAR motifs play important roles in several steps of the replication cycle, but these structures have no significant effect on the mechanism of reverse transcription.


2020 ◽  
Author(s):  
Annekathrin Reinhardt-Tews ◽  
Rościsław Krutyhołowa ◽  
Christian Günzel ◽  
Sebastian Glatt ◽  
Karin D Breunig

ABSTRACTThe yeast galactose switch operated by the Gal4p-Gal80p-Gal3p regulatory module is a textbook model of transcription regulation in eukaryotes. The Gal80 protein inhibits Gal4p-mediated transcription activation by binding to the transcription activation domain. Inhibition is relieved by formation of an alternative Gal80-Gal3 complex. In yeasts lacking a Gal3p ortholog the Gal1 protein combines regulatory and enzymatic activity. The data presented here reveal a so-far unknown role of the Gal80 N-terminus in the mechanism of Gal4p activation. The N-terminus contains an NLS, which is responsible for nuclear accumulation of KlGal80p and galactokinase inhibition in vitro. Herein we propose a model where the N-terminus of KlGal80p reaches into the catalytic center of KlGal1p of the nuclear fraction of KlGal1p triggering dissociation of the KlGal80-KlGal4 complex. We corroborate this model by genetic analyses and structural modelling and provide a rationale for the divergent evolution of the mechanism activating Gal4p.Summary blurbActivation of gene expression by Gal4p in K. lactis requires an element in the N-terminus of KlGal80 that mediates nuclear import, KlGal1 interaction and galactokinase inhibition


Sign in / Sign up

Export Citation Format

Share Document