scholarly journals Characterization of dacC, Which Encodes a New Low-Molecular-Weight Penicillin-Binding Protein in Bacillus subtilis

1998 ◽  
Vol 180 (18) ◽  
pp. 4967-4973 ◽  
Author(s):  
Lotte B. Pedersen ◽  
Thomas Murray ◽  
David L. Popham ◽  
Peter Setlow

ABSTRACT The pbp gene (renamed dacC), identified by the Bacillus subtilis genome sequencing project, encodes a putative 491-residue protein with sequence homology to low-molecular-weight penicillin-binding proteins. Use of a transcriptional dacC-lacZ fusion revealed thatdacC expression (i) is initiated at the end of stationary phase; (ii) depends strongly on transcription factor ςH; and (iii) appears to be initiated from a promoter located immediately upstream of yoxA, a gene of unknown function located upstream of dacC on the B. subtilis chromosome. A B. subtilis dacCinsertional mutant grew and sporulated identically to wild-type cells, and dacC and wild-type spores had the same heat resistance, cortex structure, and germination and outgrowth kinetics. Expression ofdacC in Escherichia coli showed that this gene encodes an ∼59-kDa membrane-associated penicillin-binding protein which is highly toxic when overexpressed.

2001 ◽  
Vol 183 (5) ◽  
pp. 1595-1599 ◽  
Author(s):  
Colette Duez ◽  
Marc Vanhove ◽  
Xavier Gallet ◽  
Fabrice Bouillenne ◽  
Jean-Denis Docquier ◽  
...  

ABSTRACT Penicillin-binding protein 4a (PBP4a) from Bacillus subtilis was overproduced and purified to homogeneity. It clearly exhibits dd-carboxypeptidase and thiolesterase activities in vitro. Although highly isologous to the Actinomadura sp. strain R39 DD-peptidase (B. Granier, C. Duez, S. Lepage, S. Englebert, J. Dusart, O. Dideberg, J. van Beeumen, J. M. Frère, and J. M. Ghuysen, Biochem. J. 282:781–788, 1992), which is rapidly inactivated by many β-lactams, PBP4a is only moderately sensitive to these compounds. The second-order rate constant (k 2/K) for the acylation of the essential serine by benzylpenicillin is 300,000 M−1s−1 for the Actinomadura sp. strain R39 peptidase, 1,400 M−1 s−1 for B. subtilis PBP4a, and 7,000 M−1 s−1 forEscherichia coli PBP4, the third member of this class of PBPs. Cephaloridine, however, efficiently inactivates PBP4a (k 2/K = 46,000 M−1 s−1). PBP4a is also much more thermostable than the R39 enzyme.


Gene ◽  
2000 ◽  
Vol 246 (1-2) ◽  
pp. 187-196 ◽  
Author(s):  
L.B. Pedersen ◽  
K. Ragkousi ◽  
T.J. Cammett ◽  
E. Melly ◽  
A. Sekowska ◽  
...  

1998 ◽  
Vol 180 (24) ◽  
pp. 6493-6502 ◽  
Author(s):  
Thomas Murray ◽  
David L. Popham ◽  
Christine B. Pearson ◽  
Arthur R. Hand ◽  
Peter Setlow

ABSTRACT The loss of Bacillus subtilis penicillin-binding protein (PBP) 2a, encoded by pbpA, was previously shown to slow spore outgrowth and result in an increased diameter of the outgrowing spore. Further analyses to define the defect inpbpA spore outgrowth have shown that (i) outgrowingpbpA spores exhibited only a slight defect in the rate of peptidoglycan (PG) synthesis compared to wild-type spores, but PG turnover was significantly slowed during outgrowth of pbpAspores; (ii) there was no difference in the location of PG synthesis in outgrowing wild-type and pbpA spores once cell elongation had been initiated; (iii) outgrowth and elongation of pbpAspores were dramatically affected by the levels of monovalent or divalent cations in the medium; (iv) there was a partial redundancy of function between PBP2a and PBP1 or -4 during spore outgrowth; and (v) there was no difference in the structure of PG from outgrowing wild-type spores or spores lacking PBP2a or PBP2a and -4; but also (vi) PG from outgrowing spores lacking PBP1 and -2a had transiently decreased cross-linking compared to PG from outgrowing wild-type spores, possibly due to the loss of transpeptidase activity.


2004 ◽  
Vol 186 (1) ◽  
pp. 258-261 ◽  
Author(s):  
Yuping Wei ◽  
Derrell C. McPherson ◽  
David L. Popham

ABSTRACT The Bacillus subtilis genome encodes 16 penicillin-binding proteins (PBPs), some of which are involved in synthesis of the spore peptidoglycan. The pbpI (yrrR) gene encodes a class B PBP, PBP4b, and is transcribed in the mother cell by RNA polymerase containing σE. Loss of PBP4b, alone and in combination with other sporulation-specific PBPs, had no effect on spore peptidoglycan structure.


2019 ◽  
Vol 59 (10) ◽  
pp. 1004-1015 ◽  
Author(s):  
Bassem M. Salama ◽  
Wafaa A. Helmy ◽  
Tamer I. M. Ragab ◽  
Mamdouh M. Ali ◽  
Hanan A. A. Taie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document