scholarly journals Isolation and Characterization of Mutations inBacillus subtilis That Allow Spore Germination in the Novel Germinant d-Alanine

1999 ◽  
Vol 181 (11) ◽  
pp. 3341-3350 ◽  
Author(s):  
Madan Paidhungat ◽  
Peter Setlow

ABSTRACT Bacillus subtilis spores break their metabolic dormancy through a process called germination. Spore germination is triggered by specific molecules called germinants, which are thought to act by binding to and stimulating spore receptors. Three homologous operons,gerA, gerB, and gerK, were previously proposed to encode germinant receptors because inactivating mutations in those genes confer a germinant-specific defect in germination. To more definitely identify genes that encode germinant receptors, we isolated mutants whose spores germinated in the novel germinant d-alanine, because such mutants would likely contain gain-of-function mutations in genes that encoded preexisting germinant receptors. Three independent mutants were isolated, and in each case the mutant phenotype was shown to result from a single dominant mutation in the gerB operon. Two of the mutations altered the gerBA gene, whereas the third affected thegerBB gene. These results suggest that gerBAand gerBB encode components of the germinant receptor. Furthermore, genetic interactions between the wild-typegerB and the mutant gerBA and gerBBalleles suggested that the germinant receptor might be a complex containing GerBA, GerBB, and probably other proteins. Thus, we propose that the gerB operon encodes at least two components of a multicomponent germinant receptor.

2000 ◽  
Vol 182 (9) ◽  
pp. 2513-2519 ◽  
Author(s):  
Madan Paidhungat ◽  
Peter Setlow

ABSTRACT Dormant Bacillus subtilis spores germinate in the presence of particular nutrients called germinants. The spores are thought to recognize germinants through receptor proteins encoded by the gerA family of operons, which includesgerA, gerB, and gerK. We sought to substantiate this putative function of the GerA family proteins by characterizing spore germination in a mutant strain that contained deletions at all known gerA-like loci. As expected, the mutant spores germinated very poorly in a variety of rich media. In contrast, they germinated like wild-type spores in a chemical germinant, a 1-1 chelate of Ca2+ and dipicolinic acid (DPA). These observations showed that proteins encoded bygerA family members are required for nutrient-induced germination but not for chemical-triggered germination, supporting the hypothesis that the GerA family encodes receptors for nutrient germinants. Further characterization of Ca2+–DPA-induced germination showed that the effect of Ca2+–DPA on spore germination was saturated at 60 mM and had a Km of 30 mM. We also found that decoating spores abolished their ability to germinate in Ca2+–DPA but not in nutrient germinants, indicating that Ca2+–DPA and nutrient germinants probably act through parallel arms of the germination pathway.


Genetics ◽  
1994 ◽  
Vol 137 (3) ◽  
pp. 627-636 ◽  
Author(s):  
D B Garrity ◽  
S A Zahler

Abstract It has been proposed that uncharged tRNA molecules may act as positive regulatory factors to control the expression of a number of operons in Bacillus subtilis and related bacteria by interacting with leader sequences to cause antitermination. In this study we report the isolation and characterization of regulatory mutations that modify one of the tRNA molecules predicted to have such a regulatory role. Three different alleles of the B. subtilis leucine tRNA gene leuG were found that resulted in higher expression of the ilv-leu biosynthetic operon. Each resulted in a base change in the D-loop of the leucine tRNA molecule with the anticodon 5'-GAG-3' (leucine tRNAGAG). Experiments with strains that are diploid for mutant and wild-type alleles suggested that both charged and uncharged tRNA molecules may interact with leader sequences to control expression of the operon.


2006 ◽  
Vol 189 (5) ◽  
pp. 1531-1541 ◽  
Author(s):  
Adam Reeves ◽  
W. G. Haldenwang

ABSTRACT The general stress response of Bacillus subtilis is controlled by the activity state of the σB transcription factor. Physical stress is communicated to σB via a large-molecular-mass (>106-Da) structure (the stressosome) formed by one or more members of a family of homologous proteins (RsbR, YkoB, YojH, YqhA). The positive regulator (RsbT) of the σB stress induction pathway is incorporated into the complex bound to an inhibitor protein (RsbS). Exposure to stress empowers an RsbT-dependent phosphorylation of RsbR and RsbS, with the subsequent release of RsbT to activate downstream processes. The mechanism by which stress initiates these reactions is unknown. In an attempt to identify changes in stressosome components that could lead to σB activation, a DNA segment encoding these proteins was mutagenized and placed into B. subtilis to create a merodiploid strain for these genes. Eight mutations that allowed heightened σB activity in the presence of their wild-type counterparts were isolated. Two of the mutations are missense changes in rsbR, and six are amino acid changes in rsbS. Additional experiments suggested that both of the rsbR mutations and three of the rsbS mutations likely enhance σB activity by elevating the level of RsbS phosphorylation. All of the mutations were found to be dominant over wild-type alleles only when they are cotranscribed within an rsbR rsbS rsbT operon. The data suggest that changes in RsbR can initiate the downstream events that lead to σB activation and that RsbR, RsbS, and RsbT likely interact with each other concomitantly with their synthesis.


Viruses ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 27
Author(s):  
Jun Kwon ◽  
Sang Guen Kim ◽  
Hyoun Joong Kim ◽  
Sib Sankar Giri ◽  
Sang Wha Kim ◽  
...  

The increasing emergence of antimicrobial resistance has become a global issue. Therefore, many researchers have attempted to develop alternative antibiotics. One promising alternative is bacteriophage. In this study, we focused on a jumbo-phage infecting Salmonella isolated from exotic pet markets. Using a Salmonella strain isolated from reptiles as a host, we isolated and characterized the novel jumbo-bacteriophage pSal-SNUABM-04. This phage was investigated in terms of its morphology, host infectivity, growth and lysis kinetics, and genome. The phage was classified as Myoviridae based on its morphological traits and showed a comparatively wide host range. The lysis efficacy test showed that the phage can inhibit bacterial growth in the planktonic state. Genetic analysis revealed that the phage possesses a 239,626-base pair genome with 280 putative open reading frames, 76 of which have a predicted function and 195 of which have none. By genome comparison with other jumbo phages, the phage was designated as a novel member of Machinavirus composed of Erwnina phages.


2006 ◽  
Vol 189 (5) ◽  
pp. 1565-1572 ◽  
Author(s):  
Venkata Ramana Vepachedu ◽  
Peter Setlow

ABSTRACT The release of dipicolinic acid (DPA) during the germination of Bacillus subtilis spores by the cationic surfactant dodecylamine exhibited a pH optimum of ∼9 and a temperature optimum of 60°C. DPA release during dodecylamine germination of B. subtilis spores with fourfold-elevated levels of the SpoVA proteins that have been suggested to be involved in the release of DPA during nutrient germination was about fourfold faster than DPA release during dodecylamine germination of wild-type spores and was inhibited by HgCl2. Spores carrying temperature-sensitive mutants in the spoVA operon were also temperature sensitive in DPA release during dodecylamine germination as well as in lysozyme germination of decoated spores. In addition to DPA, dodecylamine triggered the release of amounts of Ca2+ almost equivalent to those of DPA, and at least one other abundant spore small molecule, glutamic acid, was released in parallel with Ca2+ and DPA. These data indicate that (i) dodecylamine triggers spore germination by opening a channel in the inner membrane for Ca2+-DPA and other small molecules, (ii) this channel is composed at least in part of proteins, and (iii) SpoVA proteins are involved in the release of Ca2+-DPA and other small molecules during spore germination, perhaps by being a part of a channel in the spore's inner membrane.


Extremophiles ◽  
2002 ◽  
Vol 6 (6) ◽  
pp. 499-506 ◽  
Author(s):  
Niran Roongsawang ◽  
Jiraporn Thaniyavarn ◽  
Suthep Thaniyavarn ◽  
Takayuki Kameyama ◽  
Mitsuru Haruki ◽  
...  

1985 ◽  
Vol 5 (7) ◽  
pp. 1543-1553 ◽  
Author(s):  
G S Roeder ◽  
C Beard ◽  
M Smith ◽  
S Keranen

The his4-917 mutation of Saccharomyces cerevisiae results from the insertion of the Ty element Ty917 into the regulatory region of the HIS4 gene and renders the cell His-. The hist4-912 delta mutant, which carries a solo delta in the 5'-noncoding region of HIS4, is His+ at 37 degrees C but His- at 23 degrees C. Both these mutations interfere with HIS4 expression at the transcriptional level. The His- phenotype of both insertion mutations is suppressed by mutations at the SPT2 locus. The product of the wild-type SPT2 gene apparently represses HIS4 transcription in these mutant strains; this repression is relieved when the SPT2 gene is destroyed by mutation. The repression of transcription by SPT2 presumably results from an interaction between the SPT2+ gene product and Ty or delta sequences. In this paper, we report the cloning and DNA sequence analysis of the wild-type SPT2 gene and show that the gene is capable of encoding a protein of 333 amino acids in length. In addition, we show that a dominant mutation of the SPT2 gene results from the generation of an ochre codon which is presumed to lead to a shortened SPT2 gene product.


Sign in / Sign up

Export Citation Format

Share Document