scholarly journals The Escherichia coli Ada Protein Can Interact with Two Distinct Determinants in the ς70 Subunit of RNA Polymerase According to Promoter Architecture: Identification of the Target of Ada Activation at the alkAPromoter

1999 ◽  
Vol 181 (5) ◽  
pp. 1524-1529 ◽  
Author(s):  
Paolo Landini ◽  
Stephen J. W. Busby

ABSTRACT The methylated form of the Ada protein (meAda) activates transcription from the Escherichia coli ada,aidB, and alkA promoters with different mechanisms. In this study we identify amino acid substitutions in region 4 of the RNA polymerase subunit ς70 that affect Ada-activated transcription at alkA. Substitution to alanine of residues K593, K597, and R603 in ς70 region 4 results in decreased Ada-dependent binding of RNA polymerase to thealkA promoter in vitro and impairs alkAtranscription both in vivo and in vitro, suggesting that these residues define a determinant for meAda-ς70interaction. In a previous study (P. Landini, J. A. Bown, M. R. Volkert, and S. J. W. Busby, J. Biol. Chem. 273:13307–13312, 1998), we showed that a set of negatively charged amino acids in ς70 region 4 is involved inmeAda-ς70 interaction at the adaand aidB promoters. However, the alanine substitutions of positively charged residues K593, K597, and R603 do not affectmeAda-dependent transcription at ada andaidB. Unlike the ς70 amino acids involved in the interaction with meAda at the ada andaidB promoters, K593, K597, and R603 are not conserved in ςS, an alternative ς subunit of RNA polymerase mainly expressed during the stationary phase of growth. WhilemeAda is able to promote transcription by the ςS form of RNA polymerase (EςS) atada and aidB, it fails to do so atalkA. We propose that meAda can activate transcription at different promoters by contacting distinct determinants in ς70 region 4 in a manner dependent on the location of the Ada binding site.

2014 ◽  
Author(s):  
Carlo G. Artieri ◽  
Hunter B. Fraser

The recent advent of ribosome profiling ? sequencing of short ribosome-bound fragments of mRNA ? has offered an unprecedented opportunity to interrogate the sequence features responsible for modulating translational rates. Nevertheless, numerous analyses of the first riboprofiling dataset have produced equivocal and often incompatible results. Here we analyze three independent yeast riboprofiling data sets, including two with much higher coverage than previously available, and find that all three show substantial technical sequence biases that confound interpretations of ribosomal occupancy. After accounting for these biases, we find no effect of previously implicated factors on ribosomal pausing. Rather, we find that incorporation of proline, whose unique side-chain stalls peptide synthesis in vitro, also slows the ribosome in vivo. We also reanalyze a recent method that reported positively charged amino acids as the major determinant of ribosomal stalling and demonstrate that its assumptions lead to false signals of stalling in low-coverage data. Our results suggest that any analysis of riboprofiling data should account for sequencing biases and sparse coverage. To this end, we establish a robust methodology that enables analysis of ribosome profiling data without prior assumptions regarding which positions spanned by the ribosome cause stalling.


2007 ◽  
Vol 189 (23) ◽  
pp. 8430-8436 ◽  
Author(s):  
Olga V. Kourennaia ◽  
Pieter L. deHaseth

ABSTRACT The heat shock sigma factor (σ32 in Escherichia coli) directs the bacterial RNA polymerase to promoters of a specific sequence to form a stable complex, competent to initiate transcription of genes whose products mitigate the effects of exposure of the cell to high temperatures. The histidine at position 107 of σ32 is at the homologous position of a tryptophan residue at position 433 of the main sigma factor of E. coli, σ70. This tryptophan is essential for the strand separation step leading to the formation of the initiation-competent RNA polymerase-promoter complex. The heat shock sigma factors of all gammaproteobacteria sequenced have a histidine at this position, while in the alpha- and deltaproteobacteria, it is a tryptophan. In vitro the alanine-for-histidine substitution at position 107 (H107A) destabilizes complexes between the GroE promoter and RNA polymerase containing σ32, implying that H107 plays a role in formation or maintenance of the strand-separated complex. In vivo, the H107A substitution in σ32 impedes recovery from heat shock (exposure to 42°C), and it also leads to overexpression at lower temperatures (30°C) of the Flu protein, which is associated with biofilm formation.


2010 ◽  
Vol 88 (2) ◽  
pp. 529-539 ◽  
Author(s):  
Simon Stammen ◽  
Franziska Schuller ◽  
Sylvia Dietrich ◽  
Martin Gamer ◽  
Rebekka Biedendieck ◽  
...  

1975 ◽  
Vol 72 (7) ◽  
pp. 2506-2510 ◽  
Author(s):  
W. Zillig ◽  
H. Fujiki ◽  
W. Blum ◽  
D. Janekovic ◽  
M. Schweiger ◽  
...  

1999 ◽  
Vol 181 (3) ◽  
pp. 893-898 ◽  
Author(s):  
Jean-François Prost ◽  
Didier Nègre ◽  
Christelle Oudot ◽  
Katsuhiko Murakami ◽  
Akira Ishihama ◽  
...  

ABSTRACT The icd gene of Escherichia coli, encoding isocitrate dehydrogenase, was shown to be expressed from two different promoters: the previously identified icd P1 and a newly detected second promoter, icd P2, whose expression is positively regulated by the catabolite repressor-activator protein Cra, formerly called FruR. In each case, we determined the mRNA start site by primer extension analysis of in vivo transcripts and examined the interaction of the icd control region with either RNA polymerase or Cra. We observed that (i) the Cra factor binds to and activates transcription from a site centered at position −76.5 within the icd P2 promoter region and (ii) three particular mutations in the C-terminal end of the α subunit of RNA polymerase (L262A, R265A, and N268A) considerably diminish transcription initiating from the icd P2 promoter, as shown by in vitro experiments performed in the presence of mutant RNA polymerases carrying Ala substitutions.


2008 ◽  
Vol 190 (10) ◽  
pp. 3434-3443 ◽  
Author(s):  
Umender K. Sharma ◽  
Dipankar Chatterji

ABSTRACT Anti-sigma factors Escherichia coli Rsd and bacteriophage T4 AsiA bind to the essential housekeeping sigma factor, σ70, of E. coli. Though both factors are known to interact with the C-terminal region of σ70, the physiological consequences of these interactions are very different. This study was undertaken for the purpose of deciphering the mechanisms by which E. coli Rsd and bacteriophage T4 AsiA inhibit or modulate the activity of E. coli RNA polymerase, which leads to the inhibition of E. coli cell growth to different amounts. It was found that AsiA is the more potent inhibitor of in vivo transcription and thus causes higher inhibition of E. coli cell growth. Measurements of affinity constants by surface plasmon resonance experiments showed that Rsd and AsiA bind to σ70 with similar affinity. Data obtained from in vivo and in vitro binding experiments clearly demonstrated that the major difference between AsiA and Rsd is the ability of AsiA to form a stable ternary complex with RNA polymerase. The binding patterns of AsiA and Rsd with σ70 studied by using the yeast two-hybrid system revealed that region 4 of σ70 is involved in binding to both of these anti-sigma factors; however, Rsd interacts with other regions of σ70 as well. Taken together, these results suggest that the higher inhibition of E. coli growth by AsiA expression is probably due to the ability of the AsiA protein to trap the holoenzyme RNA polymerase rather than its higher binding affinity to σ70.


2009 ◽  
Vol 75 (19) ◽  
pp. 6306-6311 ◽  
Author(s):  
Shota Atsumi ◽  
Zhen Li ◽  
James C. Liao

ABSTRACTA pathway toward isobutanol production previously constructed inEscherichia coliinvolves 2-ketoacid decarboxylase (Kdc) fromLactococcus lactisthat decarboxylates 2-ketoisovalerate (KIV) to isobutyraldehyde. Here, we showed that a strain lacking Kdc is still capable of producing isobutanol. We found that acetolactate synthase fromBacillus subtilis(AlsS), which originally catalyzes the condensation of two molecules of pyruvate to form 2-acetolactate, is able to catalyze the decarboxylation of KIV like Kdc both in vivo and in vitro. Mutational studies revealed that the replacement of Q487 with amino acids with small side chains (Ala, Ser, and Gly) diminished only the decarboxylase activity but maintained the synthase activity.


2003 ◽  
Vol 185 (21) ◽  
pp. 6477-6480 ◽  
Author(s):  
Masahiko Imashimizu ◽  
Shoko Fujiwara ◽  
Ryohei Tanigawa ◽  
Kan Tanaka ◽  
Takatsugu Hirokawa ◽  
...  

ABSTRACT The levels of transcripts of the cpc operon were highly reduced in a PD-1 mutant of cyanobacterium Synechocystis sp. strain PCC 6714. This was due to a substitution of C for T that occurred at 5 bp upstream of the transcription initiation site of the cpc operon. Any substitution for T at the −5 position drastically reduced both in vivo and in vitro promoter activity in cyanobacterium Synechococcus sp. strain PCC 7942 but not the in vivo activity in Escherichia coli. This suggests that the requirement of −5T appears to be specific for a cyanobacterial RNA polymerase-promoter combination.


Sign in / Sign up

Export Citation Format

Share Document