scholarly journals Acetolactate Synthase from Bacillus subtilis Serves as a 2-Ketoisovalerate Decarboxylase for Isobutanol Biosynthesis in Escherichia coli

2009 ◽  
Vol 75 (19) ◽  
pp. 6306-6311 ◽  
Author(s):  
Shota Atsumi ◽  
Zhen Li ◽  
James C. Liao

ABSTRACTA pathway toward isobutanol production previously constructed inEscherichia coliinvolves 2-ketoacid decarboxylase (Kdc) fromLactococcus lactisthat decarboxylates 2-ketoisovalerate (KIV) to isobutyraldehyde. Here, we showed that a strain lacking Kdc is still capable of producing isobutanol. We found that acetolactate synthase fromBacillus subtilis(AlsS), which originally catalyzes the condensation of two molecules of pyruvate to form 2-acetolactate, is able to catalyze the decarboxylation of KIV like Kdc both in vivo and in vitro. Mutational studies revealed that the replacement of Q487 with amino acids with small side chains (Ala, Ser, and Gly) diminished only the decarboxylase activity but maintained the synthase activity.

2008 ◽  
Vol 190 (18) ◽  
pp. 6134-6147 ◽  
Author(s):  
Shigeo Tojo ◽  
Takenori Satomura ◽  
Kanako Kumamoto ◽  
Kazutake Hirooka ◽  
Yasutaro Fujita

ABSTRACT Branched-chain amino acids are the most abundant amino acids in proteins. The Bacillus subtilis ilv-leu operon is involved in the biosynthesis of branched-chain amino acids. This operon exhibits a RelA-dependent positive stringent response to amino acid starvation. We investigated this positive stringent response upon lysine starvation as well as decoyinine treatment. Deletion analysis involving various lacZ fusions revealed two molecular mechanisms underlying the positive stringent response of ilv-leu, i.e., CodY-dependent and -independent mechanisms. The former is most likely triggered by the decrease in the in vivo concentration of GTP upon lysine starvation, GTP being a corepressor of the CodY protein. So, the GTP decrease derepressed ilv-leu expression through detachment of the CodY protein from its cis elements upstream of the ilv-leu promoter. By means of base substitution and in vitro transcription analyses, the latter (CodY-independent) mechanism was found to comprise the modulation of the transcription initiation frequency, which likely depends on fluctuation of the in vivo RNA polymerase substrate concentrations after stringent treatment, and to involve at least the base species of adenine at the 5′ end of the ilv-leu transcript. As discussed, this mechanism is presumably distinct from that for B. subtilis rrn operons, which involves changes in the in vivo concentration of the initiating GTP.


Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 264
Author(s):  
Hak Jin Lee ◽  
Seong Tae Jhang ◽  
Hyung Jong Jin

Macrolide–lincosamide–streptogramin B antibiotic resistance occurs through the action of erythromycin ribosome methylation (Erm) family proteins, causing problems due to their prevalence and high minimal inhibitory concentration, and feasibilities have been sought to develop inhibitors. Erms exhibit high conservation next to the N-terminal end region (NTER) as in ErmS, 64SQNF67. Side chains of homologous S, Q and F in ErmC’ are surface-exposed, located closely together and exhibit intrinsic flexibility; these residues form a motif X. In S64 mutations, S64G, S64A and S64C exhibited 71%, 21% and 20% activity compared to the wild-type, respectively, conferring cell resistance. However, mutants harboring larger side chains did not confer resistance and retain the methylation activity in vitro. All mutants of Q65, Q65N, Q65E, Q65R, and Q65H lost their methyl group transferring activity in vivo and in vitro. At position F67, a size reduction of side-chain (F67A) or a positive charge (F67H) greatly reduced the activity to about 4% whereas F67L with a small size reduction caused a moderate loss, more than half of the activity. The increased size by F67Y and F67W reduced the activity by about 75%. In addition to stabilization of the cofactor, these amino acids could interact with substrate RNA near the methylatable adenine presumably to be catalytically well oriented with the SAM (S-adenosyl-L-methionine). These amino acids together with the NTER beside them could serve as unique potential inhibitor development sites. This region constitutes a divergent element due to the NTER which has variable length and distinct amino acids context in each Erm. The NTER or part of it plays critical roles in selective recognition of substrate RNA by Erms and this presumed target site might assume distinct local structure by induced conformational change with binding to substrate RNA and SAM, and contribute to the specific recognition of substrate RNA.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1446
Author(s):  
Natalia Zashikhina ◽  
Marina Vasileva ◽  
Olga Perevedentseva ◽  
Irina Tarasenko ◽  
Tatiana Tennikova ◽  
...  

Among the various biocompatible amphiphilic copolymers, biodegradable ones are the most promising for the preparation of drug delivery systems since they are destroyed under physiological conditions, that, as a rule, reduce toxicity and provide controlled release of the drug. Hybrid graft-copolymers consisting of the main inorganic polyphosphazene chain and polypeptide side chains are of considerable interest for the development of delivery systems with a controlled degradation rate, since the main and side chains will have different degradation mechanisms (chemical and enzymatic hydrolysis, respectively). Variable particle degradation rate, controlled by the adjusting the composition of substituents, will allow selective delivery in vivo and controlled drug release. The present work proposes the preparation of biodegradable macroinitiators based on polyorganophosphazenes for the synthesis of hybrid copolymers. Synthesis of novel biodegradable macroinitiators based on polyorganophosphazenes was performed via macromolecular substitution of a polydichlorophosphazene chain with the sodium alcoholates, amines and amino acids. The composition of copolymers obtained was calculated using NMR. These polyorganophosphazenes bearing primary amino groups can be considered as convenient macroinitiators for the polymerization of NCA of α-amino acids in order to prepare hybrid copolymers polyphosphazene-graft-polypeptide. The developed macroinitiators were amphiphilic and self-assembled in the aqueous media into nanoparticles. Furthermore, the ability to encapsulate and release a model substance was demonstrated. In addition, the in vitro cytotoxicity of synthesized polymers was evaluated using two cell lines.


1999 ◽  
Vol 181 (5) ◽  
pp. 1524-1529 ◽  
Author(s):  
Paolo Landini ◽  
Stephen J. W. Busby

ABSTRACT The methylated form of the Ada protein (meAda) activates transcription from the Escherichia coli ada,aidB, and alkA promoters with different mechanisms. In this study we identify amino acid substitutions in region 4 of the RNA polymerase subunit ς70 that affect Ada-activated transcription at alkA. Substitution to alanine of residues K593, K597, and R603 in ς70 region 4 results in decreased Ada-dependent binding of RNA polymerase to thealkA promoter in vitro and impairs alkAtranscription both in vivo and in vitro, suggesting that these residues define a determinant for meAda-ς70interaction. In a previous study (P. Landini, J. A. Bown, M. R. Volkert, and S. J. W. Busby, J. Biol. Chem. 273:13307–13312, 1998), we showed that a set of negatively charged amino acids in ς70 region 4 is involved inmeAda-ς70 interaction at the adaand aidB promoters. However, the alanine substitutions of positively charged residues K593, K597, and R603 do not affectmeAda-dependent transcription at ada andaidB. Unlike the ς70 amino acids involved in the interaction with meAda at the ada andaidB promoters, K593, K597, and R603 are not conserved in ςS, an alternative ς subunit of RNA polymerase mainly expressed during the stationary phase of growth. WhilemeAda is able to promote transcription by the ςS form of RNA polymerase (EςS) atada and aidB, it fails to do so atalkA. We propose that meAda can activate transcription at different promoters by contacting distinct determinants in ς70 region 4 in a manner dependent on the location of the Ada binding site.


2015 ◽  
Vol 197 (11) ◽  
pp. 1952-1962 ◽  
Author(s):  
Katherine A. Black ◽  
Patricia C. Dos Santos

ABSTRACTThe 2-thiouridine (s2U) modification of the wobble position in glutamate, glutamine, and lysine tRNA molecules serves to stabilize the anticodon structure, improving ribosomal binding and overall efficiency of the translational process. Biosynthesis of s2U inEscherichia colirequires a cysteine desulfurase (IscS), a thiouridylase (MnmA), and five intermediate sulfur-relay enzymes (TusABCDE). TheE. coliMnmA adenylates and subsequently thiolates tRNA to form the s2U modification.Bacillus subtilislacks IscS and the intermediate sulfur relay proteins, yet its genome contains a cysteine desulfurase gene,yrvO, directly adjacent tomnmA. The genomic synteny ofyrvOandmnmAcombined with the absence of the Tus proteins indicated a potential functionality of these proteins in s2U formation. Here, we provide evidence that theB. subtilisYrvO and MnmA are sufficient for s2U biosynthesis. A conditionalB. subtilisknockout strain showed that s2U abundance correlates with MnmA expression, andin vivocomplementation studies inE. coliIscS- or MnmA-deficient strains revealed the competency of these proteins in s2U biosynthesis.In vitroexperiments demonstrated s2U formation by YrvO and MnmA, and kinetic analysis established a partnership between theB. subtilisproteins that is contingent upon the presence of ATP. Furthermore, we observed that the slow-growth phenotype ofE. coliΔiscSand ΔmnmAstrains associated with s2U depletion is recovered byB. subtilis yrvOandmnmA. These results support the proposal that the involvement of a devoted cysteine desulfurase, YrvO, in s2U synthesis bypasses the need for a complex biosynthetic pathway by direct sulfur transfer to MnmA.IMPORTANCEThe 2-thiouridine (s2U) modification of the wobble position in glutamate, glutamine, and lysine tRNA is conserved in all three domains of life and stabilizes the anticodon structure, thus guaranteeing fidelity in translation. The biosynthesis of s2U inEscherichia colirequires seven proteins: the cysteine desulfurase IscS, the thiouridylase MnmA, and five intermediate sulfur-relay enzymes (TusABCDE).Bacillus subtilisand most Gram-positive bacteria lack a complete set of biosynthetic components. Interestingly, themnmAcoding sequence is located adjacent toyrvO, encoding a cysteine desulfurase. In this work, we provide evidence that theB. subtilisYrvO is able to transfer sulfur directly to MnmA. Both proteins are sufficient for s2U biosynthesis in a pathway independent of the one used inE. coli.


2007 ◽  
Vol 190 (4) ◽  
pp. 1224-1236 ◽  
Author(s):  
Boris R. Belitsky ◽  
Abraham L. Sonenshein

ABSTRACT CodY is a global transcriptional regulator that is known to control directly the expression of at least two dozen operons in Bacillus subtilis, but the rules that govern the binding of CodY to its target DNA have been unclear. Using DNase I footprinting experiments, we identified CodY-binding sites upstream of the B. subtilis ylmA and yurP genes. The protected regions overlapped versions of a previously proposed CodY-binding consensus motif, AATTTTCWGAAAATT. Multiple single mutations were introduced into the CodY-binding sites of the ylmA, yurP, dppA, and ilvB genes. The mutations affected both the affinity of CodY for its binding sites in vitro and the expression in vivo of lacZ fusions that carry these mutations in their promoter regions. Our results show that versions of the AATTTTCWGAAAATT motif, first identified for Lactococcus lactis CodY, with up to five mismatches play an important role in the interaction of B. subtilis CodY with DNA.


2004 ◽  
Vol 186 (17) ◽  
pp. 5775-5781 ◽  
Author(s):  
David E. Anderson ◽  
Frederico J. Gueiros-Filho ◽  
Harold P. Erickson

ABSTRACT FtsZ is the major cytoskeletal component of the bacterial cell division machinery. It forms a ring-shaped structure (the Z ring) that constricts as the bacterium divides. Previous in vivo experiments with green fluorescent protein-labeled FtsZ and fluorescence recovery after photobleaching have shown that the Escherichia coli Z ring is extremely dynamic, continually remodeling itself with a half time of 30 s, similar to microtubules in the mitotic spindle. In the present work, under different experimental conditions, we have found that the half time for fluorescence recovery of E. coli Z rings is even shorter (∼9 s). As before, the turnover appears to be coupled to GTP hydrolysis, since the mutant FtsZ84 protein, with reduced GTPase in vitro, showed an ∼3-fold longer half time. We have also extended the studies to Bacillus subtilis and found that this species exhibits equally rapid dynamics of the Z ring (half time, ∼8 s). Interestingly, null mutations of the FtsZ-regulating proteins ZapA, EzrA, and MinCD had only modest effects on the assembly dynamics. This suggests that these proteins do not directly regulate FtsZ subunit exchange in and out of polymers. In B. subtilis, only 30 to 35% of the FtsZ protein was in the Z ring, from which we conclude that a Z ring only 2 or 3 protofilaments thick can function for cell division.


2001 ◽  
Vol 67 (3) ◽  
pp. 1025-1029 ◽  
Author(s):  
Luo Sun ◽  
Inca Ghosh ◽  
Henry Paulus ◽  
Ming-Qun Xu

ABSTRACT Protein splicing in trans has been demonstrated both in vivo and in vitro by biochemical and immunological analyses, but in vivo production of a functional protein by trans-splicing has not been reported previously. In this study, we used the DnaE intein from Synechocystis sp. strain PCC6803, which presumably reconstitutes functional DnaE protein bytrans-splicing in vivo, to produce functional herbicide-resistant acetolactate synthase II (ALSII) from two unlinked gene fragments in Escherichia coli. The gene for herbicide-resistant ALSII was fused in frame to DnaE intein segments capable of promoting protein splicing in trans and was expressed from two compatible plasmids as two unlinked fragments. Cotransformation of E. coli with the two plasmids led to production of a functional enzyme that conferred herbicide resistance to the host E. coli cells. These results demonstrate the feasibility of expressing functional genes from two unlinked DNA loci and provide a model for the design of nontransferable transgenes in plants.


Author(s):  
Chuqiao Zhang ◽  
Yuka Yashiro ◽  
Yuriko Sakaguchi ◽  
Tsutomu Suzuki ◽  
Kozo Tomita

Abstract Escherichia coli ItaT toxin reportedly acetylates the α-amino group of the aminoacyl-moiety of Ile-tRNAIle specifically, using acetyl-CoA as an acetyl donor, thereby inhibiting protein synthesis. The mechanism of the substrate specificity of ItaT had remained elusive. Here, we present functional and structural analyses of E. coli ItaT, which revealed the mechanism of ItaT recognition of specific aminoacyl-tRNAs for acetylation. In addition to Ile-tRNAIle, aminoacyl-tRNAs charged with hydrophobic residues, such as Val-tRNAVal and Met-tRNAMet, were acetylated by ItaT in vivo. Ile-tRNAIle, Val-tRNAVal and Met-tRNAMet were acetylated by ItaT in vitro, while aminoacyl-tRNAs charged with other hydrophobic residues, such as Ala-tRNAAla, Leu-tRNALeu and Phe-tRNAPhe, were less efficiently acetylated. A comparison of the structures of E. coli ItaT and the protein N-terminal acetyltransferase identified the hydrophobic residues in ItaT that possibly interact with the aminoacyl moiety of aminoacyl-tRNAs. Mutations of the hydrophobic residues of ItaT reduced the acetylation activity of ItaT toward Ile-tRNAIlein vitro, as well as the ItaT toxicity in vivo. Altogether, the size and shape of the hydrophobic pocket of ItaT are suitable for the accommodation of the specific aminoacyl-moieties of aminoacyl-tRNAs, and ItaT has broader specificity toward aminoacyl-tRNAs charged with certain hydrophobic amino acids.


Sign in / Sign up

Export Citation Format

Share Document