scholarly journals In Vitro Transcriptional Studies of thebkd Operon of Pseudomonas putida:l-Branched-Chain Amino Acids and d-Leucine Are the Inducers

1999 ◽  
Vol 181 (9) ◽  
pp. 2889-2894 ◽  
Author(s):  
Kunapuli T. Madhusudhan ◽  
Jinhe Luo ◽  
John R. Sokatch

ABSTRACT BkdR is the transcriptional activator of the bkdoperon, which encodes the four proteins of the branched-chain keto acid dehydrogenase multienzyme complex of Pseudomonas putida. In this study, hydroxyl radical footprinting revealed that BkdR bound to only one face of DNA over the same region identified in DNase I protection assays. Deletions of even a few bases in the 5′ region of the BkdR-binding site greatly reduced transcription, confirming that the entire protected region is necessary for transcription. In vitro transcription of the bkd operon was obtained by using a vector containing the bkdR-bkdA1 intergenic region plus the putative ρ-independent terminator of the bkdoperon. Substrate DNA, BkdR, and any of thel-branched-chain amino acids or d-leucine was required for transcription. Branched-chain keto acids,d-valine, and d-isoleucine did not promote transcription. Therefore, the l-branched-chain amino acids and d-leucine are the inducers of the bkdoperon. The concentration of l-valine required for half-maximal transcription was 2.8 mM, which is similar to that needed to cause half-maximal proteolysis due to a conformational change in BkdR. A model for transcriptional activation of the bkdoperon by BkdR during enzyme induction which incorporates these results is presented.

2009 ◽  
Vol 191 (17) ◽  
pp. 5446-5457 ◽  
Author(s):  
Heike Preis ◽  
Rita A. Eckart ◽  
Rajani K. Gudipati ◽  
Nadja Heidrich ◽  
Sabine Brantl

ABSTRACT Regulatory small RNAs (sRNAs) in bacterial genomes have become a focus of research over the past 8 years. Whereas more than 100 such sRNAs have been found in Escherichia coli, relatively little is known about sRNAs in gram-positive bacteria. Using a computational approach, we identified two sRNAs in intergenic regions of the Bacillus subtilis genome, SR1 and SR2 (renamed BsrF). Recently, we demonstrated that SR1 inhibits the translation initiation of the transcriptional activator AhrC. Here, we describe detection of BsrF, its expression profile, and its regulation by CodY. Furthermore, we mapped the secondary structure of BsrF. BsrF is expressed in complex and minimal media in all growth phases in B. subtilis and, with a similar expression profile, also in Bacillus amyloliquefaciens. Neither overexpression nor deletion of bsrF affected the growth of B. subtilis. BsrF was found to be long-lived in complex and minimal media. Analysis of 13 putative transcription factor binding sites upstream of bsrF revealed only an effect for CodY. Here, we showed by using Northern blotting, lacZ reporter gene fusions, in vitro transcription, and DNase I footprinting that the transcription of bsrF is activated by CodY in the presence of branched-chain amino acids and GTP. Furthermore, BsrF transcription was increased 1.5- to 2-fold by glucose in the presence of branched-chain amino acids, and this increase was independent of the known glucose-dependent regulators. BsrF is the second target for which transcriptional activation by CodY has been discovered.


Author(s):  
Moath Alqaraleh ◽  
Violet Kasabri ◽  
Ibrahim Al-Majali ◽  
Nihad Al-Othman ◽  
Nihad Al-Othman ◽  
...  

Background and aims: Branched chain amino acids (BCAAs) can be tightly connected to metabolism syndrome (MetS) which can be counted as a metabolic indicator in the case of insulin resistance (IR). The aim of this study was to assess the potential role of these acids under oxidative stress. Material and Methods: the in vitro antioxidant activity of BCAAs was assessed using free radical 1, 1-diphenyl-2-picryl-hydrazyl (DPPH) scavenging assays. For further check, a qRT-PCR technique was madefor detection the extent of alterations in gene expression of antioxidative enzymes (catalase and glutathione peroxidase (Gpx)) in lipopolysaccharides (LPS(-induced macrophages RAW 264.7 cell line. Additionally, BCAAs antioxidant activity was evaluated based on plasma H2O2 levels and xanthine oxidase (XO) activity in prooxidative LPS-treated mice. Results: Different concentrations of BCAAs affected on DPPH radical scavenging activity but to lesser extent than the ascorbic acid. Besides, BCAAs obviously upregulated the gene expression levels of catalases and Gpx in LPS-modulated macrophage RAW 264.7 cell line. In vivo BCAAs significantly minimized the level of plasma H2O2 as well as the activity of XO activity under oxidative stress. Conclusion: our current findings suggest that BCAAs supplementation may potentially serve as a therapeutic target for treatment of oxidative stress occurs with atherosclerosis, IR-diabetes, MetS and tumorigenesis.


Hepatology ◽  
1987 ◽  
Vol 7 (2) ◽  
pp. 324-329 ◽  
Author(s):  
Wolfgang Base ◽  
Carl Barsigian ◽  
Alisa Schaeffer ◽  
Ellen Shaw ◽  
Jose Martinez ◽  
...  

1990 ◽  
Vol 73 (3A) ◽  
pp. NA-NA
Author(s):  
H. Yamada ◽  
Y. Ohta ◽  
I. Chaudhry ◽  
H. Nagashima ◽  
J. Askanazi ◽  
...  

1978 ◽  
Vol 235 (1) ◽  
pp. E47
Author(s):  
W E Mitch ◽  
W Chan

Isolated rat kidney perfused without substrate released serine, glycine, and taurine, and substantially smaller amounts of other amino acids. When branched-chain keto acids were added, the corresponding amino acids were released at rates amounting to 15-25% of keto acid disappearance. Perfusion with 2 mM alpha-keto-isovalerate or alpha-keto-beta-methylvalerate caused an increased glucose release amounting to 18-23% of keto acid disappearance. The activity of branched-chain amino acid transferase (BATase) was significantly stimulated by perfusion with the analogue of leucine, but not by perfusion with alpha-ketoglutarate, the analogues of valine or isoleucine, or with leucine itself. These findings document that the kidney converts branched-chain keto acids in part to the corresponding amino acids and suggest that the keto analogue of leucine may be involved in the control of renal BATase activity, thereby indirectly regulating the metabolism of branched-chain amino acids.


2008 ◽  
Vol 190 (18) ◽  
pp. 6134-6147 ◽  
Author(s):  
Shigeo Tojo ◽  
Takenori Satomura ◽  
Kanako Kumamoto ◽  
Kazutake Hirooka ◽  
Yasutaro Fujita

ABSTRACT Branched-chain amino acids are the most abundant amino acids in proteins. The Bacillus subtilis ilv-leu operon is involved in the biosynthesis of branched-chain amino acids. This operon exhibits a RelA-dependent positive stringent response to amino acid starvation. We investigated this positive stringent response upon lysine starvation as well as decoyinine treatment. Deletion analysis involving various lacZ fusions revealed two molecular mechanisms underlying the positive stringent response of ilv-leu, i.e., CodY-dependent and -independent mechanisms. The former is most likely triggered by the decrease in the in vivo concentration of GTP upon lysine starvation, GTP being a corepressor of the CodY protein. So, the GTP decrease derepressed ilv-leu expression through detachment of the CodY protein from its cis elements upstream of the ilv-leu promoter. By means of base substitution and in vitro transcription analyses, the latter (CodY-independent) mechanism was found to comprise the modulation of the transcription initiation frequency, which likely depends on fluctuation of the in vivo RNA polymerase substrate concentrations after stringent treatment, and to involve at least the base species of adenine at the 5′ end of the ilv-leu transcript. As discussed, this mechanism is presumably distinct from that for B. subtilis rrn operons, which involves changes in the in vivo concentration of the initiating GTP.


Sign in / Sign up

Export Citation Format

Share Document