scholarly journals vrrB, a Hypervariable Open Reading Frame in Bacillus anthracis

2000 ◽  
Vol 182 (14) ◽  
pp. 3989-3997 ◽  
Author(s):  
James M. Schupp ◽  
Alexandra M. Klevytska ◽  
Guenevier Zinser ◽  
Lance B. Price ◽  
Paul Keim

ABSTRACT Bacillus anthracis appears to be the most molecularly homogeneous bacterial species known. Extensive surveys of worldwide isolates have revealed vanishingly small amounts of genomic variation. The biological importance of the resting-stage spore may lead to very low evolutionary rates and, perhaps, to the lack of potentially adaptive genetic variation. In contrast to the overall homogeneity, some gene coding regions contain hypervariability that is translated into protein variation. During marker analysis of diverse strains, we have discovered a novel ca. 750-nucleotide open reading frame (ORF) that contains in-frame, variable-number tandem-repeat sequences. Four distinct variable regions exist within vrrB, giving rise to 11 distinct alleles in eight different length categories among B. anthracis strains. This ORF putatively codes for a 241- to 265-amino-acid protein, rich in glutamine (13.2%), glycine (23.4%), and histidine (23.0%). The variable-region amino acids of the vrrB ORF are strongly hydrophilic. Coupled with putative transmembrane domains flanking the variable regions, this suggests a membrane-anchored cytosolic or extracellular location for the putative protein. Sequence analysis of the complete ORFs from three Bacillus cereus strains shows maintenance of the ORF across species boundaries, including strong conservation of the amino acid sequence and the capacity to vary among strains. The presence of 11 different alleles of the vrrB locus is in stark contrast to the near homogeneity of B. anthracis. Evolution of hypervariable genes can negate the lack of genetic variability in species such as B. anthracisand provide select rapid evolution in other more variable species.

2005 ◽  
Vol 187 (22) ◽  
pp. 7765-7772 ◽  
Author(s):  
Thomas Candela ◽  
Michèle Mock ◽  
Agnès Fouet

ABSTRACT Polyglutamate is found in various bacteria, but displays different functions depending on the species and their environment. Here, we describe a minimal polyglutamate synthesis system in Bacillus anthracis. In addition to the three genes previously described as sufficient for polyglutamate synthesis, this system includes a small open reading frame, capE, belonging to the cap operon. The polyglutamate system's requirement for the five cap genes, for capsulation and anchoring, was assayed in nonpolar mutants. The capA, capB, capC, and capE genes are all necessary and are sufficient for polyglutamate synthesis by B. anthracis. capD is required for polyglutamate anchoring to the peptidoglycan. The 47-amino-acid peptide encoded by capE is localized in the B. anthracis membrane. It is not a regulator and it is required for polyglutamate synthesis, suggesting that it has a structural role in polyglutamate synthesis. CapE appears to interact with CapA. Bacillus subtilis ywtC is similar to capE and we named it pgsE. Genes similar to capE or pgsE were found in B. subtilis natto, Bacillus licheniformis, and Staphylococcus epidermidis, species that produce polyglutamate. All the bacterial polyglutamate synthesis systems analyzed show a similar genetic organization and, we suggest, the same protein requirements.


2002 ◽  
Vol 184 (1) ◽  
pp. 134-141 ◽  
Author(s):  
James Pannucci ◽  
Richard T. Okinaka ◽  
Robert Sabin ◽  
Cheryl R. Kuske

ABSTRACT The complete sequencing and annotation of the 181.7-kb Bacillus anthracis virulence plasmid pXO1 predicted 143 genes but could only assign putative functions to 45. Hybridization assays, PCR amplification, and DNA sequencing were used to determine whether pXO1 open reading frame (ORF) sequences were present in other bacilli and more distantly related bacterial genera. Eighteen Bacillus species isolates and four other bacterial species were tested for the presence of 106 pXO1 ORFs. Three ORFs were conserved in most of the bacteria tested. Many of the pXO1 ORFs were detected in closely related Bacillus species, and some were detected only in B. anthracis isolates. Three isolates, Bacillus cereus D-17, B. cereus 43881, and Bacillus thuringiensis 33679, contained sequences that were similar to more than one-half of the pXO1 ORF sequences examined. The majority of the DNA fragments that were amplified by PCR from these organisms had DNA sequences between 80 and 98% similar to that of pXO1. Pulsed-field gel electrophoresis revealed large potential plasmids present in both B. cereus 43881 (341 kb) and B. thuringiensis ATCC 33679 (327 kb) that hybridized with a DNA probe composed of six pXO1 ORFs.


Genome ◽  
1991 ◽  
Vol 34 (4) ◽  
pp. 644-651 ◽  
Author(s):  
Kenneth Koo ◽  
W. Dorsey Stuart

The gene product of the mtr locus of Neurospora crassa is required for the transport of neutral aliphatic and aromatic amino acids via the N system. We have previously cloned three cosmids containing Neurospora DNA that complement the mtr-6(r) mutant allele. The cloned DNAs were tightly linked to restriction fragment length polymorphisms that flank the mtr locus. A 2.9-kbp fragment from one cosmid was subcloned and found to complement the mtr-6(r) allele. Here we report the sequence of the fragment that hybridized to a poly(A)+ mRNA transcript of about 2300 nucleotides. We have identified an 845-bp open reading frame (ORF) having a 59-bp intron as the potential mtr ORF. S1 nuclease analysis of the transcript confirmed the transcript size and the presence of the intron. A second open reading frame was found upstream in the same reading frame as the mtr ORF and appears to be present in the mRNA transcript. The mtr ORF is predicted to encode a 261 amino acid polypeptide with a molecular mass of 28 613 Da. The proposed polypeptide exhibits six potential α-helical transmembrane domains with an average length of 23 amino acids, does not have a signal sequence, and contains amino acid sequence homologous to an RNA binding motif.Key words: sequence, membranes, ribonucleoprotein.


1986 ◽  
Vol 6 (5) ◽  
pp. 1711-1721
Author(s):  
E M McIntosh ◽  
R H Haynes

The dCMP deaminase gene (DCD1) of Saccharomyces cerevisiae has been isolated by screening a Sau3A clone bank for complementation of the dUMP auxotrophy exhibited by dcd1 dmp1 haploids. Plasmid pDC3, containing a 7-kilobase (kb) Sau3A insert, restores dCMP deaminase activity to dcd1 mutants and leads to an average 17.5-fold overproduction of the enzyme in wild-type cells. The complementing activity of the plasmid was localized to a 4.2-kb PvuII restriction fragment within the Sau3A insert. Subcloning experiments demonstrated that a single HindIII restriction site within this fragment lies within the DCD1 gene. Subsequent DNA sequence analysis revealed a 936-nucleotide open reading frame encompassing this HindIII site. Disruption of the open reading frame by integrative transformation led to a loss of enzyme activity and confirmed that this region constitutes the dCMP deaminase gene. Northern analysis indicated that the DCD1 mRNA is a 1.15-kb poly(A)+ transcript. The 5' end of the transcript was mapped by primer extension and appears to exhibit heterogeneous termini. Comparison of the amino acid sequence of the T2 bacteriophage dCMP deaminase with that deduced for the yeast enzyme revealed a limited degree of homology which extends over the entire length of the phage polypeptide (188 amino acids) but is confined to the carboxy-terminal half of the yeast protein (312 amino acids). A potential dTTP-binding site in the yeast and phage enzymes was identified by comparison of homologous regions with the amino acid sequences of a variety of other dTTP-binding enzymes. Despite the role of dCMP deaminase in dTTP biosynthesis, Northern analysis revealed that the DCD1 gene is not subject to the same cell cycle-dependent pattern of transcription recently found for the yeast thymidylate synthetase gene (TMP1).


1995 ◽  
Vol 15 (10) ◽  
pp. 5329-5338 ◽  
Author(s):  
K Onel ◽  
M P Thelen ◽  
D O Ferguson ◽  
R L Bennett ◽  
W K Holloman

The REC1 gene of Ustilago maydis has an uninterrupted open reading frame, predicted from the genomic sequence to encode a protein of 522 amino acid residues. Nevertheless, an intron is present, and functional activity of the gene in mitotic cells requires an RNA processing event to remove the intron. This results in a change in reading frame and production of a protein of 463 amino acid residues. The 3'-->5' exonuclease activity of proteins derived from the REC1 genomic open reading frame, the intronless open reading frame, and several mutants was investigated. The mutants included a series of deletions constructed by removing restriction fragments at the 3' end of the cloned REC1 gene and a set of mutant alleles previously isolated in screens for radiation sensitivity. All of these proteins were overproduced in Escherichia coli as N-terminal polyhistidine-tagged fusions that were subsequently purified by immobilized metal affinity chromatography and assayed for 3'-->5' exonuclease activity. The results indicated that elimination of the C-terminal third of the protein did not result in a serious reduction in 3'-->5' exonuclease activity, but deletion into the midsection caused a severe loss of activity. The biological activity of the rec1-1 allele, which encodes a truncated polypeptide with full 3'-->5' exonuclease activity, and the rec1-5 allele, which encodes a more severely truncated polypeptide with no exonuclease activity, was investigated. The two mutants were equally sensitive to the lethal effect of UV light, but the spontaneous mutation rate was elevated 10-fold over the wild-type rate in the rec1-1 mutant and 100-fold in the rec1-5 mutant. The elevated spontaneous mutation rate correlated with the ablation of exonuclease activity, but the radiation sensitivity did not. These results indicate that the C-terminal portion of the Rec1 protein is not essential for exonuclease activity but is crucial in the role of REC1 in DNA damage repair.


Genetics ◽  
1995 ◽  
Vol 141 (4) ◽  
pp. 1425-1438 ◽  
Author(s):  
P J Merriman ◽  
C D Grimes ◽  
J Ambroziak ◽  
D A Hackett ◽  
P Skinner ◽  
...  

Abstract The S elements form a diverse family of long-inverted-repeat transposons within the genome of Drosophila melanogaster. These elements vary in size and sequence, the longest consisting of 1736 bp with 234-bp inverted terminal repeats. The longest open reading frame in an intact S element could encode a 345-amino acid polypeptide. This polypeptide is homologous to the transposases of the mariner-Tc1 superfamily of transposable elements. S elements are ubiquitous in D. melanogaster populations and also appear to be present in the genomes of two sibling species; however, they seem to be absent from 17 other Drosophila species that were examined. Within D. melanogaster strains, there are, on average, 37.4 cytologically detectable S elements per diploid genome. These elements are scattered throughout the chromosomes, but several sites in both the euchromatin and beta heterochromatin are consistently occupied. The discovery of an S-element-insertion mutation and a reversion of this mutation indicates that S elements are at least occasionally mobile in the D. melanogaster genome. These elements seem to insert at an AT dinucleotide within a short palindrome and apparently duplicate that dinucleotide upon insertion.


2001 ◽  
Vol 14 (5) ◽  
pp. 675-677 ◽  
Author(s):  
J. Patrick Martinez ◽  
Sean A. Ottum ◽  
Shaukat Ali ◽  
Leonard J. Francl ◽  
Lynda M. Ciuffetti

The ToxB gene was cloned and characterized from a race 5 isolate of Pyrenophora tritici-repentis from North Dakota. ToxB contains a 261-bp open reading frame that encodes a 23 amino acid putative signal peptide and a 64 amino acid host-selective toxin, Ptr ToxB. Analysis of Ptr ToxB from heterologous expression in Pichia pastoris confirms that ToxB encodes a host-selective toxin.


2000 ◽  
Vol 182 (21) ◽  
pp. 6243-6246 ◽  
Author(s):  
Haitao Zhang ◽  
George T. Javor

ABSTRACT The open reading frame at 86.7 min on the Escherichia coli chromosome, “yigC,” complemented aubiD mutant strain, AN66, indicating that yigCis the ubiD gene. The gene product, a 497-amino-acid-residue protein, showed extensive homology to the UPF 00096 family of proteins in the Swiss-Prot database.


1998 ◽  
Vol 42 (2) ◽  
pp. 436-439 ◽  
Author(s):  
T. R. Walsh ◽  
W. A. Neville ◽  
M. H. Haran ◽  
D. Tolson ◽  
D. J. Payne ◽  
...  

ABSTRACT The Aeromonas veronii bv. sobria metallo-β-lactamase gene, imiS, was cloned. The imiS open reading frame extends for 762 bp and encodes a protein of 254 amino acids with a secreted modified protein of 227 amino acids and a predicted pI of 8.1. To confirm the predicted sequence, purified ImiS was digested and the resulting peptides were identified, yielding an identical sequence for ImiS, with 98% identity to CphA. Both possessed the putative active-site sequence Asn-Tyr-His-Thr-Asp at positions 88 to 92, which is unique to the Aeromonas metallo-β-lactamases.


Sign in / Sign up

Export Citation Format

Share Document