scholarly journals Evidence that a Linear Megaplasmid Encodes Enzymes of Aliphatic Alkene and Epoxide Metabolism and Coenzyme M (2-Mercaptoethanesulfonate) Biosynthesis in XanthobacterStrain Py2

2001 ◽  
Vol 183 (7) ◽  
pp. 2172-2177 ◽  
Author(s):  
Jonathan G. Krum ◽  
Scott A. Ensign

ABSTRACT The bacterial metabolism of propylene proceeds by epoxidation to epoxypropane followed by a sequence of three reactions resulting in epoxide ring opening and carboxylation to form acetoacetate. Coenzyme M (2-mercaptoethanesulfonic acid) (CoM) plays a central role in epoxide carboxylation by serving as the nucleophile for epoxide ring opening and the carrier of the C3 unit that is ultimately carboxylated to acetoacetate, releasing CoM. In the present work, a 320-kb linear megaplasmid has been identified in the gram-negative bacterium Xanthobacter strain Py2, which contains the genes encoding the key enzymes of propylene oxidation and epoxide carboxylation. Repeated subculturing of Xanthobacter strain Py2 under nonselective conditions, i.e., with glucose or acetate as the carbon source in the absence of propylene, resulted in the loss of the propylene-positive phenotype. The propylene-negative phenotype correlated with the loss of the 320-kb linear megaplasmid, loss of induction and expression of alkene monooxgenase and epoxide carboxylation enzyme activities, and the loss of CoM biosynthetic capability. Sequence analysis of a hypothetical protein (XecG), encoded by a gene located downstream of the genes for the four enzymes of epoxide carboxylation, revealed a high degree of sequence identity with proteins of as-yet unassigned functions in the methanogenic archaeaMethanobacterium thermoautotrophicum andMethanococcus jannaschii and in Bacillus subtilis. The M. jannaschii homolog of XecG, MJ0255, is located next to a gene, MJ0256, that has been shown to encode a key enzyme of CoM biosynthesis (M. Graupner, H. Xu, and R. H. White, J. Bacteriol. 182: 4862–4867, 2000). We propose that the propylene-positive phenotype of Xanthobacter strain Py2 is dependent on the selective maintenance of a linear megaplasmid containing the genes for the key enzymes of alkene oxidation, epoxide carboxylation, and CoM biosynthesis.

2019 ◽  
Author(s):  
Ke-Yin Ye ◽  
Terry McCallum ◽  
Song Lin

Organic radicals are generally short-lived intermediates with exceptionally high reactivity. Strategically, achieving synthetically useful transformations mediated by organic radicals requires both efficient initiation and selective termination events. Here, we report a new catalytic strategy, namely bimetallic radical redox-relay, in the regio- and stereoselective rearrangement of epoxides to allylic alcohols. This approach exploits the rich redox chemistry of Ti and Co complexes and merges reductive epoxide ring opening (initiation) with hydrogen atom transfer (termination). Critically, upon effecting key bond-forming and -breaking events, Ti and Co catalysts undergo proton-transfer/electron-transfer with one another to achieve turnover, thus constituting a truly synergistic dual catalytic system.<br>


2020 ◽  
Vol 17 ◽  
Author(s):  
Duc Dau Xuan

: The synthesis of the A-B bicyclic ring structure 3 of the natural product Stemocurtisine is described. The synthesis was accomplished in seven synthetic steps from commercially available L-glutamic acid. The key step involved a borono-Mannich reaction between the hemiaminal 6 and trans-β-styryl boronic acid and trans-β-styrylpotassiumtrifluoroborate to prepare the cis diene 4. Attempts to prepare the A-B-C ring compound 2 via intramolecular epoxide ring opening followed by rearangement under different basic conditions were unsuccessful. Only unreactive starting material was recovered.


2021 ◽  
Vol 11 (4) ◽  
pp. 1561
Author(s):  
Gabrielle Foran ◽  
Nina Verdier ◽  
David Lepage ◽  
Arnaud Prébé ◽  
David Aymé-Perrot ◽  
...  

Solid polymer electrolytes have been widely proposed for use in all solid-state lithium batteries. Advantages of polymer electrolytes over liquid and ceramic electrolytes include their flexibility, tunability and easy processability. An additional benefit of using some types of polymers for electrolytes is that they can be processed without the use of solvents. An example of polymers that are compatible with solvent-free processing is epoxide-containing precursors that can form films via the lithium salt-catalyzed epoxide ring opening polymerization reaction. Many polymers with epoxide functional groups are liquid under ambient conditions and can be used to directly dissolve lithium salts, allowing the reaction to be performed in a single reaction vessel under mild conditions. The existence of a variety of epoxide-containing polymers opens the possibility for significant customization of the resultant films. This review discusses several varieties of epoxide-based polymer electrolytes (polyethylene, silicone-based, amine and plasticizer-containing) and to compare them based on their thermal and electrochemical properties.


1976 ◽  
Vol 7 (42) ◽  
pp. no-no
Author(s):  
ERWIN GLOTTER ◽  
PNINA KRINSKY ◽  
MIRIAM REJTOE ◽  
MARTIN WEISSENBERG

1980 ◽  
Vol 58 (3) ◽  
pp. 302-306 ◽  
Author(s):  
Margaret M. Kayser ◽  
Peter Morand

The regioselectivity of epoxide ring opening can be analyzed in terms of hard–soft acid–base (HSAB) theory. The coordination of the hard acid with the oxygen atom of the oxirane ring produces a "pulling effect" which determines the direction of the ring opening. In the absence of a strong "pulling effect" the "pushing effect" of the approaching base is examined and the consequences of relative softness or hardness of the nucleophile on the regioselectivity of the ring opening are discussed.


2021 ◽  
Vol 9 (13) ◽  
pp. 8480-8488
Author(s):  
Xiaoting Jing ◽  
Zhen Li ◽  
Weijie Geng ◽  
Hongjin Lv ◽  
Yingnan Chi ◽  
...  

A POM@rGO monolith reactor was constructed using a facile and broad-spectrum hydrothermal approach and it effectively catalyzes epoxide ring-opening reactions with 99% conversion and over 90% selectivity, reaching a turnover number (TON) of around 28 044 after 38 h catalysis.


2009 ◽  
Vol 7 (12) ◽  
pp. 2559 ◽  
Author(s):  
Mathew W. C. Robinson ◽  
A. Matthew Davies ◽  
Richard Buckle ◽  
Ian Mabbett ◽  
Stuart H. Taylor ◽  
...  

ChemInform ◽  
2015 ◽  
Vol 46 (9) ◽  
pp. no-no
Author(s):  
Azim Ziyaei Halimehjani ◽  
Seyyed Emad Hooshmand ◽  
Elham Vali Shamiri

Sign in / Sign up

Export Citation Format

Share Document