scholarly journals SHERLOCK and DETECTR: CRISPR-Cas Systems as Potential Rapid Diagnostic Tools for Emerging Infectious Diseases

Author(s):  
Mujahed I. Mustafa ◽  
Abdelrafie M. Makhawi

Infectious diseases are one of the most intimidating threats to human race, responsible for an immense burden of disabilities and deaths. Rapid diagnosis and treatment of infectious diseases is a better understanding of its pathogenesis. According to WHO, the ideal approach for detecting foreign pathogens should be rapid, specific, sensitive, instrument-free and cost-effective. Nucleic acid pathogen detection methods, typically PCR have numerous limitations, such as highly sophisticated equipments, reagents, and trained personnel rely on well-established laboratories beside time-consuming. Thus, there is a crucial need to develop novel nucleic acid detection tools with rapid, specific, sensitive, and cost-effective, particularly ones that can be used for versatile point-of-care diagnostic applications. Two new methods exploit on unpredicted in vitro properties CRISPR-Cas effectors, turning activated nucleases into basic amplifiers of a specific nucleic-acid binding event. These effectors are attached with a diversity of reporters and utilized in tandem with present of isothermal amplification approaches to create sensitive identification in multiple field deployable formats. Although still in their beginning, yet SHERLOCK and DETECTR technologies are potential methods for rapid detection and identification of infectious disease, with ultra-sensitive tests that don't require a lot of complicated processing. This review described SHERLOCK and DETECTR technologies beside their properties, functions, and perspectives to become the ultimate diagnostic tools for diagnosing infectious diseases and curbing disease outbreaks.

Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1356
Author(s):  
Sangha Kwon ◽  
Ha Youn Shin

Rapid and precise diagnostic tests can prevent the spread of diseases, including worldwide pandemics. Current commonly used diagnostic methods include nucleic-acid-amplification-based detection methods and immunoassays. These techniques, however, have several drawbacks in diagnosis time, accuracy, and cost. Nucleic acid amplification methods are sensitive but time-consuming, whereas immunoassays are more rapid but relatively insensitive. Recently developed CRISPR-based nucleic acid detection methods have been found to compensate for these limitations. In particular, the unique collateral enzymatic activities of Cas12 and Cas13 have dramatically reduced the diagnosis times and costs, while improving diagnostic accuracy and sensitivity. This review provides a comprehensive description of the distinct enzymatic features of Cas12 and Cas13 and their applications in the development of molecular diagnostic platforms for pathogen detection. Moreover, it describes the current utilization of CRISPR-Cas-based diagnostic techniques to identify SARS-CoV-2 infection, as well as recent progress in the development of CRISPR-Cas-based detection strategies for various infectious diseases. These findings provide insights into designing effective molecular diagnostic platforms for potential pandemics.


2019 ◽  
Vol 26 (1) ◽  
pp. 121-165 ◽  
Author(s):  
Agnieszka Chylewska ◽  
Małgorzata Ogryzek ◽  
Mariusz Makowski

Background:Analytical chemistry and biotechnology as an interdisciplinary fields of science have been developed during many years and are experiencing significant growth, to cover a wide range of microorganisms separation techniques and methods, utilized for medical therapeutic and diagnostic purposes. Currently scientific reports contribute by introducing electrophoretical and immunological methods and formation of devices applied in food protection (avoiding epidemiological diseases) and healthcare (safety ensuring in hospitals).Methods:Electrophoretic as well as nucleic-acid-based or specific immunological methods have contributed tremendously to the advance of analyses in recent three decades, particularly in relation to bacteria, viruses and fungi identifications, especially in medical in vitro diagnostics, as well as in environmental or food protection.Results:The paper presents the pathogen detection competitiveness of these methods against conventional ones, which are still too time consuming and also labor intensive. The review is presented in several parts following the current trends in improved pathogens separation and detection methods and their subsequent use in medical diagnosis.Discussion:Part one, consists of elemental knowledge about microorganisms as an introduction to their characterization: descriptions of divisions, sizes, membranes (cells) components. Second section includes the development, new technological and practical solution descriptions used in electrophoretical procedures during microbes analyses, with special attention paid to bio-samples analyses like blood, urine, lymph or wastewater. Third part covers biomolecular areas that have created a basis needed to identify the progress, limitations and challenges of nucleic-acid-based and immunological techniques discussed to emphasize the advantages of new separative techniques in selective fractionating of microorganisms.


Author(s):  
Patrycja Sroga ◽  
David Safronetz ◽  
Derek R Stein

With the rise of viral infections and antibiotic resistance, there is a constant need for the development of more sensitive and effective treatment and diagnostic tools. Since their discovery in the early 1990s, Camelidae antibodies have been investigated as potential tools due to their unique structure and favorable characteristics. Members of this family produce conventional IgG antibodies as well as heavy-chain only IgG antibodies that do not possess light chains. The variable domain (VHH), or nanobody, demonstrates unique antigen-binding capabilities, enhanced stability, and its small size allows for delivery into the body using a nebulizer, thereby eliminating the unfavorable use of injections. In addition, the cost-effective and easy in vitro production of these antibodies are an attractive quality in terms of mass production. This review covers the past and current nanobody treatment and diagnostic developments aimed at viral infectious diseases, including a brief overview of protozoal, bacterial, and veterinary viral approaches.


Life ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1210
Author(s):  
Kok Gan Chan ◽  
Geik Yong Ang ◽  
Choo Yee Yu ◽  
Chan Yean Yean

The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a global threat with an ever-increasing death toll even after a year on. Hence, the rapid identification of infected individuals with diagnostic tests continues to be crucial in the on-going effort to combat the spread of COVID-19. Viral nucleic acid detection via real-time reverse transcription polymerase chain reaction (rRT-PCR) or sequencing is regarded as the gold standard for COVID-19 diagnosis, but these technically intricate molecular tests are limited to centralized laboratories due to the highly specialized instrument and skilled personnel requirements. Based on the current development in the field of diagnostics, the programmable clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) system appears to be a promising technology that can be further explored to create rapid, cost-effective, sensitive, and specific diagnostic tools for both laboratory and point-of-care (POC) testing. Other than diagnostics, the potential application of the CRISPR–Cas system as an antiviral agent has also been gaining attention. In this review, we highlight the recent advances in CRISPR–Cas-based nucleic acid detection strategies and the application of CRISPR–Cas as a potential antiviral agent in the context of COVID-19.


Diagnostics ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1259
Author(s):  
Alex van Belkum ◽  
Carina Almeida ◽  
Benjamin Bardiaux ◽  
Sarah V. Barrass ◽  
Sarah J. Butcher ◽  
...  

Infectious diseases are an existential health threat, potentiated by emerging and re-emerging viruses and increasing bacterial antibiotic resistance. Targeted treatment of infectious diseases requires precision diagnostics, especially in cases where broad-range therapeutics such as antibiotics fail. There is thus an increasing need for new approaches to develop sensitive and specific in vitro diagnostic (IVD) tests. Basic science and translational research are needed to identify key microbial molecules as diagnostic targets, to identify relevant host counterparts, and to use this knowledge in developing or improving IVD. In this regard, an overlooked feature is the capacity of pathogens to adhere specifically to host cells and tissues. The molecular entities relevant for pathogen–surface interaction are the so-called adhesins. Adhesins vary from protein compounds to (poly-)saccharides or lipid structures that interact with eukaryotic host cell matrix molecules and receptors. Such interactions co-define the specificity and sensitivity of a diagnostic test. Currently, adhesin-receptor binding is typically used in the pre-analytical phase of IVD tests, focusing on pathogen enrichment. Further exploration of adhesin–ligand interaction, supported by present high-throughput “omics” technologies, might stimulate a new generation of broadly applicable pathogen detection and characterization tools. This review describes recent results of novel structure-defining technologies allowing for detailed molecular analysis of adhesins, their receptors and complexes. Since the host ligands evolve slowly, the corresponding adhesin interaction is under selective pressure to maintain a constant receptor binding domain. IVD should exploit such conserved binding sites and, in particular, use the human ligand to enrich the pathogen. We provide an inventory of methods based on adhesion factors and pathogen attachment mechanisms, which can also be of relevance to currently emerging pathogens, including SARS-CoV-2, the causative agent of COVID-19.


2022 ◽  
Author(s):  
Sharmili Roy ◽  
FAREEHA ARSHAD ◽  
Shimaa Eissa ◽  
Mohammadali Safavieh ◽  
Sanaa G. Alattas ◽  
...  

The rapid development of accurate and quick diagnostic tools for infectious diseases has made a massive impact in global health. POC devices for pathogen detection have primarily contributed to clinical...


2019 ◽  
Vol 45 (5) ◽  
pp. 346-350 ◽  
Author(s):  
Mila Stefanova Zemyarska

In vitro fertilisation (IVF) ‘add-ons’ are therapeutic or diagnostic tools developed in an endeavour to improve the success rate of infertility treatment. However, there is no conclusive evidence that these interventions are a beneficial or effective adjunct of assisted reproductive technologies. Additionally, IVF add-ons are often implemented in clinical practice before their safety can be thoroughly ascertained. Yet, patients continue to request and pay large sums for such additional IVF tools. Hence, this essay set out to examine if it is ethical to provide IVF add-ons when there is no evidence of a benefit if the patient requests it. In order to determine what is ethical—namely, morally good and righteous, the question was considered in relation to three key values of medical ethics—autonomy, beneficence and non-maleficence. It was determined that providing IVF add-ons might be morally acceptable in specific circumstances, if true informed consent can be given, there is a potential of cost-effective physiological or psychological benefit and the risk of harm is minimal, particularly with regard to the unborn child.


PLoS ONE ◽  
2012 ◽  
Vol 7 (4) ◽  
pp. e36300 ◽  
Author(s):  
Hanna J. Broome ◽  
Michael D. Hebert

2018 ◽  
Vol 11 (4) ◽  
pp. 93 ◽  
Author(s):  
Philisiwe Molefe ◽  
Priscilla Masamba ◽  
Babatunji Oyinloye ◽  
Londiwe Mbatha ◽  
Mervin Meyer ◽  
...  

Cancer and infectious diseases such as Ebola, HIV, tuberculosis, Zika, hepatitis, measles and human schistosomiasis are serious global health hazards. The increasing annual morbidities and mortalities of these diseases have been blamed on drug resistance and the inefficacy of available diagnostic tools, particularly those which are immunologically-based. Antibody-based tools rely solely on antibody production for diagnosis and for this reason they are the major cause of diagnostic delays. Unfortunately, the control of these diseases depends on early detection and administration of effective treatment therefore any diagnostic delay is a huge challenge to curbing these diseases. Hence, there is a need for alternative diagnostic tools, discovery and development of novel therapeutic agents. Studies have demonstrated that aptamers could potentially offer one of the best solutions to these problems. Aptamers are short sequences of either DNA or RNA molecules, which are identified in vitro through a SELEX process. They are sensitive and bind specifically to target molecules. Their promising features suggest they may serve as better diagnostic agents and can be used as drug carriers for therapeutic purposes. In this article, we review the applications of aptamers in the theranostics of cancer and some infectious diseases.


2004 ◽  
Vol 67 (4) ◽  
pp. 823-832 ◽  
Author(s):  
JOHN L. McKILLIP ◽  
MARYANNE DRAKE

Quality assurance in the food industry in recent years has involved the acceptance and implementation of a variety of nucleic acid–based methods for rapid and sensitive detection of food-associated pathogenic bacteria. Techniques such as polymerase chain reaction have greatly expedited the process of pathogen detection and have in some cases replaced traditional methods for bacterial enumeration in food. Conventional PCR, albeit sensitive and specific under optimized conditions, obligates the user to employ agarose gel electrophoresis as the means for endpoint analysis following sample processing. For the last few years, a variety of real-time PCR chemistries and detection instruments have appeared on the market, and many of these lend themselves to applications in food microbiology. These approaches afford a user the ability to amplify DNA or RNA, as well as detect and confirm target sequence identity in a closed-tube format with the use of a variety of fluorophores, labeled probes, or both, without the need to run gels. Such real-time chemistries also offer greater sensitivity than traditional gel visualization and can be semiquantitative and multiplexed depending on the specific experimental objectives. This review emphasizes the current systems available for real-time PCR–based pathogen detection, the basic mechanisms and requirements for each, and the prospects for development over the next few years in the food industry.


Sign in / Sign up

Export Citation Format

Share Document