scholarly journals Direct Detection and Identification of Bacterial Pathogens from Urine with Optimized Specimen Processing and Enhanced Testing Algorithm

2017 ◽  
Vol 55 (5) ◽  
pp. 1488-1495 ◽  
Author(s):  
Bin Huang ◽  
Lei Zhang ◽  
Weizheng Zhang ◽  
Kang Liao ◽  
Shihong Zhang ◽  
...  

ABSTRACT Rapid and accurate detection and identification of microbial pathogens causing urinary tract infections allow prompt and specific treatment. We optimized specimen processing to maximize the limit of detection (LOD) by matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) and evaluated the capacity of combination of MALDI-TOF MS and urine analysis (UA) for direct detection and identification of bacterial pathogens from urine samples. The optimal volumes of processed urine, formic acid/acetonitrile, and supernatant spotted onto the target plate were 15 ml, 3 μl, and 3 μl, respectively, yielding a LOD of 1.0 × 10 5 CFU/ml. Among a total of 1,167 urine specimens collected from three hospital centers, 612 (52.4%) and 351 (30.1%) were, respectively, positive by UA and urine culture. Compared with a reference method comprised of urine culture and 16S rRNA gene sequencing, the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of MALDI-TOF MS alone and MALDI-TOF MS coupled with UA were 86.6% versus 93.4% (χ 2 = 8.93; P < 0.01), 91.5% versus 96.3% (χ 2 = 7.06; P < 0.01), 81.5% versus 96.4% (χ 2 = 37.32; P < 0.01), and 94.1% versus 93.1% (χ 2 = 0.40; P > 0.05), respectively. No significant performance differences were revealed among the three sites, while specificity and NPV of MALDI-TOF MS for males were significantly higher than those for females (specificity, 94.3% versus 77.3%, χ 2 = 44.90, P < 0.01; NPV, 95.5% versus 86.1%, χ 2 = 18.85, P < 0.01). Our results indicated that the optimization of specimen processing significantly enhanced analytical sensitivity and that the combination of UA and MALDI-TOF MS provided an accurate and rapid detection and identification of bacterial pathogens directly from urine.

2017 ◽  
Vol 55 (6) ◽  
pp. 1802-1811 ◽  
Author(s):  
Sandra Montgomery ◽  
Kiana Roman ◽  
Lan Ngyuen ◽  
Ana Maria Cardenas ◽  
James Knox ◽  
...  

ABSTRACTUrinary tract infections are one of the most common reasons for health care visits. Diagnosis and optimal treatment often require a urine culture, which takes an average of 1.5 to 2 days from urine collection to results, delaying optimal therapy. Faster, but accurate, alternatives are needed. Light scatter technology has been proposed for several years as a rapid screening tool, whereby negative specimens are excluded from culture. A commercially available light scatter device, BacterioScan 216Dx (BacterioScan, Inc.), has recently been advertised for this application. Paired use of mass spectrometry (MS) for bacterial identification and automated-system-based susceptibility testing straight from the light scatter suspension might provide dramatic improvement in times to a result. The present study prospectively evaluated the BacterioScan device, with culture as the reference standard. Positive light scatter specimens were used for downstream rapid matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) MS organism identification and automated-system-based antimicrobial susceptibility testing. Prospective evaluation of 439 urine samples showed a sensitivity of 96.5%, a specificity of 71.4%, and positive and negative predictive values of 45.1% and 98.8%, respectively. MALDI-TOF MS analysis of the suspension after density-based selection yielded a sensitivity of 72.1% and a specificity of 96.9%. Antimicrobial susceptibility testing of the samples identified by MALDI-TOF MS produced an overall categorical agreement of 99.2%. Given the high sensitivity and negative predictive value of results obtained, BacterioScan 216Dx is a reasonable approach for urine screening and might produce negative results in as few as 3 h, with no downstream workup. Paired rapid identification and susceptibility testing might be useful when MALDI-TOF MS results in an organism identification, and it might decrease the time to a result by more than 24 h.


2018 ◽  
Vol 159 (1) ◽  
pp. 23-30
Author(s):  
Emese Juhász ◽  
Miklós Iván ◽  
Júlia Pongrácz ◽  
Katalin Kristóf

Abstract: Introduction: Glucose non-fermenting Gram-negative bacteria are ubiquitous environmental organisms. Most of them are identified as opportunistic, nosocomial pathogens in patients. Uncommon species are identified accurately, mainly due to the introduction of matrix-assisted laser desorption-ionization time of flight mass spectrometry (MALDI-TOF MS) in clinical microbiology practice. Most of these uncommon non-fermenting rods are isolated from lower respiratory tract samples. Their significance in lower respiratory tract infections, such as rules of their testing are not clarified yet. Aim: The aim of this study was to review the clinical microbiological features of these bacteria, especially their roles in lower respiratory tract infections and antibiotic treatment options. Method: Lower respiratory tract samples of 3589 patients collected in a four-year period (2013–2016) were analyzed retrospectively at Semmelweis University (Budapest, Hungary). Identification of bacteria was performed by MALDI-TOF MS, the antibiotic susceptibility was tested by disk diffusion method. Results: Stenotrophomonas maltophilia was revealed to be the second, whereas Acinetobacter baumannii the third most common non-fermenting rod in lower respiratory tract samples, behind the most common Pseudomonas aeruginosa. The total number of uncommon non-fermenting Gram-negative isolates was 742. Twenty-three percent of isolates were Achromobacter xylosoxidans. Beside Chryseobacterium, Rhizobium, Delftia, Elizabethkingia, Ralstonia and Ochrobactrum species, and few other uncommon species were identified among our isolates. The accurate identification of this species is obligatory, while most of them show intrinsic resistance to aminoglycosides. Resistance to ceftazidime, cefepime, piperacillin-tazobactam and carbapenems was frequently observed also. Conclusions: Ciprofloxacin, levofloxacin and trimethoprim-sulfamethoxazole were found to be the most effective antibiotic agents. Orv Hetil. 2018; 159(1): 23–30.


2019 ◽  
Vol 57 (9) ◽  
Author(s):  
Ferdaus Hassan ◽  
Heather Bushnell ◽  
Connie Taggart ◽  
Caitlin Gibbs ◽  
Steve Hiraki ◽  
...  

ABSTRACTUrinalysis (UA) has routinely been used as a screening tool prior to urine culture set up. BacterioScan 216Dx is an FDA-cleared semiautomated system to detect bacterial growth in urine. The aim of this study was to evaluate 216Dx in comparison to UA for diagnosis of urinary tract infection (UTI) in children. Clean-catch, unpreserved urine samples from children aged <18 years were tested by 216Dx, and positive urine samples in media were processed for direct bacterial identification by matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry. Sensitivity and specificity of 216Dx and urinalysis (UA) were determined against urine culture. Of 287 urine samples obtained from children (median age, 108 months), 44.0% and 56.0% were UA positive and negative, respectively, while 216Dx detected 27% and 73% as positive and negative, respectively. Compared to culture, the overall sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of 216Dx versus UA were 92.1% versus 97.3%, 82.7% versus 63.8%, 44.8% versus 29.1%, and 98.6% versus 99.3%, respectively. Among 216Dx true-positive (TP) samples (n= 35), 77.0% were successfully identified directly from broth by MALDI-TOF. Among urine samples that were identified as contaminated by culture (n= 127; 44%), the 216Dx detected 93 (73.0%) as negative while UA detected 69 (54.0%) as negative. Although the sensitivities of 216Dx and UA are comparable, the specificity of 216Dx was higher than that of UA. The 216Dx can be used as an alternative/adjunct screening tool to UA to rule out urinary tract infection (UTI) in children. Compared to culture, the faster turnaround time (3 hours) of 216Dx has the potential to reduce unnecessary antibiotic use and improve patient management.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Laura Van Driessche ◽  
Jade Bokma ◽  
Piet Deprez ◽  
Freddy Haesebrouck ◽  
Filip Boyen ◽  
...  

AbstractRespiratory tract infections are a major health problem and indication for antimicrobial use in cattle and in humans. Currently, most antimicrobial treatments are initiated without microbiological results, holding the risk of inappropriate first intention treatment. The main reason for this empirical treatment is the long turnaround time between sampling and availability of identification and susceptibility results. Therefore the objective of the present study was to develop a rapid identification procedure for pathogenic respiratory bacteria in bronchoalveolar lavage fluid (BALf) samples from cattle by MALDI-TOF MS, omitting the cultivation step on agar plates to reduce the turnaround time between sampling and identification of pathogens. The effects of two different liquid growth media and various concentrations of bacitracin were determined to allow optimal growth of Pasteurellaceae and minimise contamination. The best procedure was validated on 100 clinical BALf samples from cattle with conventional bacterial culture as reference test. A correct identification was obtained in 73% of the samples, with 59.1% sensitivity (Se) (47.2–71.0%) and 100% specificity (Sp) (100–100%) after only 6 hours of incubation. For pure and dominant culture samples, the procedure was able to correctly identify 79.2% of the pathogens, with a sensitivity (Se) of 60.5% (45.0–76.1%) and specificity (Sp) of 100% (100–100%). In mixed culture samples, containing ≥2 clinically relevant pathogens, one pathogen could be correctly identified in 57% of the samples with 57.1% Se (38.8–75.5%) and 100% Sp (100–100%). In conclusion, MALDI-TOF MS is a promising tool for rapid pathogen identification in BALf. This new technique drastically reduces turnaround time and may be a valuable decision support tool to rationalize antimicrobial use.


2013 ◽  
Vol 92 (2) ◽  
pp. 132-134 ◽  
Author(s):  
Dobryan M. Tracz ◽  
Stuart J. McCorrister ◽  
Garrett R. Westmacott ◽  
Cindi R. Corbett

2014 ◽  
Vol 105 ◽  
pp. 98-101 ◽  
Author(s):  
Y. Hoyos-Mallecot ◽  
C. Riazzo ◽  
C. Miranda-Casas ◽  
M.D. Rojo-Martín ◽  
J. Gutiérrez-Fernández ◽  
...  

2010 ◽  
Vol 59 (3) ◽  
pp. 273-284 ◽  
Author(s):  
Claire Moliner ◽  
Christophe Ginevra ◽  
Sophie Jarraud ◽  
Christophe Flaudrops ◽  
Marielle Bedotto ◽  
...  

Legionella species are facultative, intracellular bacteria that infect macrophages and protozoa, with the latter acting as transmission vectors to humans. These fastidious bacteria mostly cause pulmonary tract infections and are routinely identified by various molecular methods, mainly PCR targeting the mip gene and sequencing, which are expensive and time-consuming. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has emerged as a rapid and inexpensive method for identification of bacterial species. This study evaluated the use of MALDI-TOF-MS for rapid species and serogroup identification of 21 Legionella species recognized as human pathogens. To this end, a reference MS database was developed including 59 Legionella type strains, and a blind test was performed using 237 strains from various species. Two hundred and twenty-three of the 237 strains (94.1 %) were correctly identified at the species level, although ten (4.2 %) were identified with a score lower than 2.0. Fourteen strains (5.9 %) from eight species were misidentified at the species level, including seven (3.0 %) with a significant score, suggesting an intraspecific variability of protein profiles within some species. MALDI-TOF-MS was reproducible but could not identify Legionella strains at the serogroup level. When compared with mip gene sequencing, MALDI-TOF-MS exhibited a sensitivity of 99.2 and 89.9 % for the identification of Legionella strains at the genus and species level, respectively. This study demonstrated that MALDI-TOF-MS is a reliable tool for the rapid identification of Legionella strains at the species level.


2021 ◽  
Vol 70 (2) ◽  
pp. 207-213
Author(s):  
DERU LEI ◽  
PEIYING CHEN ◽  
XUETING CHEN ◽  
YUJIE ZONG ◽  
XIANGYANG LI

Rapid identification of microorganisms in urine is essential for patients with urinary tract infections (UTIs). Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been proposed as a method for the direct identification of urinary pathogens. Our purpose was to compare centrifugation-based MALDI-TOF MS and short-term culture combined with MALDI-TOF MS for the direct identification of pathogens in urine specimens. We collected 965 urine specimens from patients with suspected UTIs, 211/965 isolates were identified as positive by conventional urine culture. Compared with the conventional method, the results of centrifugation-based MALDI-TOF MS were consistent in 159/211 cases (75.4%), of which 135/159 (84.9%) had scores ≥ 2.00; 182/211 cases (86.3%) were detected using short-term culture combined with MALDI-TOF MS, of which 153/182 (84.1%) had scores ≥ 2.00. There were no apparent differences among the three methods (p = 0.135). MALDI-TOF MS appears to accelerate the microbial identification speed in urine and saves at least 24 to 48 hours compared with the routine urine culture. Centrifugation-based MALDI-TOF MS is characterized by faster identification speed; however, it is substantially affected by the number of bacterial colonies. In contrast, short-term culture combined with MALDI-TOF MS has a higher detection rate but a relatively slow identification speed. Combining these characteristics, the two methods may be effective and reliable alternatives to traditional urine culture.


2011 ◽  
Vol 35 (4) ◽  
pp. ---
Author(s):  
Sören Schubert ◽  
Andreas Wieser

Abstract Very recently a novel method for differentiation of bacteria and fungi was developed, that is, identification by means of matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF MS). This differentiation relies on the exact measurement of species-specific protein spectra of ribosomal proteins. It is at least as accurate as conventional biochemical differentiation methods, but provides results within minutes. In addition to differentiation of bacteria and yeasts grown on agar plates, direct identification is feasible from positive blood cultures as well as from urine samples of patients suffering from urinary tract infections. Future developments of MALDI-TOF MS for clinical microbiological purposes include the detection of β-lactamase and carbapenemase activity as well as genotyping of bacteria below the species level.


Author(s):  
Arzu Akşit İlki ◽  
Sevim Özsoy ◽  
Gulşen Gelmez ◽  
Burak Aksu ◽  
Güner Söyletir

AbstractUrinary tract infections are one of the most common bacterial infections and rapid diagnosis of the infection is essential for appropriate antibiotic therapy. The goal of our study was to identify urinary pathogens directly by MALDI-TOF MS and to perform antibiotic susceptibility tests in order to shorten the period spent for culturing.Urine samples submitted for culture to the Clinical Microbiology Laboratory were enrolled in this study. Urine samples were screened for leukocyte and bacteria amount by flow cytometry. Samples with bacterial load of 106–107/mL were tested directly by MALDI-TOF MS and antibiotic susceptibility tests (AST) were performed.In total, 538 positive urine samples were evaluated in our study. MALDI-TOF MS identified the microorganism directly from the urine sample in 91.8% of these samples and the concordance rate of conventional identification and direct detection was 95.8% for Gram-negatives at the genus and species level. Escherichia coli (n:401) was the most frequently isolated microorganism, followed by Klebsiella pneumoniae (n:57). AST results were generated for 111 of these urine samples and the concordance was 90% and 87% for E. coli and K. pneumoniae, respectively.Our results showed that screening of urine samples with flow cytometry to detect positive samples and identification of uropathogens directly by MALDI-TOF MS with an accuracy of over 90% can be a suitable method particularly for Gram-negative bacteria in clinical microbiology laboratories.


Sign in / Sign up

Export Citation Format

Share Document