scholarly journals Identification of Enterotoxigenic Escherichia coli Harboring Longus Type IV Pilus Gene by DNA Amplification

2000 ◽  
Vol 38 (5) ◽  
pp. 1767-1771 ◽  
Author(s):  
Zita Gutiérrez-Cázarez ◽  
Firdausi Qadri ◽  
M. John Albert ◽  
Jorge A. Girón

DNA amplification of lngA, the structural gene of longus type IV pilus produced by human enterotoxigenicEscherichia coli (ETEC) was achieved by the use of specific oligonucleotide primers designed from the nucleotide sequence oflngA. A 630-bp fragment representing the entirelngA gene was amplified in eight prototype strains previously characterized as longus positive. Five ETEC strains producing colonization factor antigen III (CFA III) (also a type IV pilus) were also positive by PCR, confirming the DNA homology between CFA III and longus. None of the non-ETEC and non-E. colienteropathogens studied showed the 0.63-kbp amplicon. The procedure thus detected only ETEC strains harboring type IV pili genes with or without other colonization factors. Except for five lngAPCR-positive, probe-positive strains, all lngA PCR-positive strains produced the pilin as demonstrated by immunoblotting. To test the amplification procedure in a clinical setting, a collection of 264 fresh clinical E. coli strains isolated from 88 Mexican children with diarrhea was screened by PCR. Among 82 ETEC isolates found, 30 (36.5%) were lngA PCR-positive. Twenty-seven percent of the children shed ETEC that possessed lngA. In parallel with DNA probes or PCR protocols to detect enterotoxin genes, the lngA PCR method may prove useful for detection of ETEC harboring type IV pilus genes in epidemiological studies.

2001 ◽  
Vol 69 (9) ◽  
pp. 5864-5873 ◽  
Author(s):  
Tooru Taniguchi ◽  
Yukihiro Akeda ◽  
Ayako Haba ◽  
Yoko Yasuda ◽  
Koichiro Yamamoto ◽  
...  

ABSTRACT The assembly of pilus colonization factor antigen III (CFA/III) of enterotoxigenic Escherichia coli (ETEC) requires the processing of CFA/III major pilin (CofA) by a prepilin peptidase (CofP), similar to other type IV pilus formation systems. CofA is produced initially as a 26.5-kDa preform pilin (prepilin) and then processed to a 20.5-kDa mature pilin by CofP which is predicted to be localized in the inner membrane. In the present experiment, we determined the nucleotide sequence of the whole region for CFA/III formation and identified a cluster of 14 genes, includingcofA and cofP. Several proteins encoded bycof genes were similar to previously described proteins, such as the toxin-coregulated pili of Vibrio cholerae and the bundle-forming pili of enteropathogenic E. coli. The G+C content of the cof gene cluster was 37%, which was significantly lower than the average for the E. coli genome (50%). The introduction of a recombinant plasmid containing thecof gene cluster into the E. coli K-12 strain conferred CFA/III biogenesis and the ability of adhesion to the human colon carcinoma cell line Caco-2. This is the first report of a complete nucleotide sequence of the type IV pili found in human ETEC, and our results provide a useful model for studying the molecular mechanism of CFA/III biogenesis and the role of CFA/III in ETEC infection.


2015 ◽  
Vol 83 (5) ◽  
pp. 1893-1903 ◽  
Author(s):  
Daniela Gutiérrez ◽  
Mirka Pardo ◽  
David Montero ◽  
Angel Oñate ◽  
Mauricio J. Farfán ◽  
...  

EnterotoxigenicEscherichia coli(ETEC), a leading cause of acute diarrhea, colonizes the intestine by means of adhesins. However, 15 to 50% of clinical isolates are negative for known adhesins, making it difficult to identify antigens for broad-coverage vaccines. The ETEC strain 1766a, obtained from a child with watery diarrhea in Chile, harbors the colonization factor CS23 but is negative for other known adhesins. One clone, derived from an ETEC 1766a genomic library (clone G10), did not produce CS23 yet was capable of adhering to Caco-2 cells. The goal of this study was to identify the gene responsible for this capacity. Random transposon-based mutagenesis allowed the identification of a 4,110-bp gene that codes for a homologue of the temperature-sensitive hemagglutinin (Tsh) autotransporter described in avianE. colistrains (97% identity, 90% coverage) and that is called TleA (Tsh-like ETEC autotransporter) herein. An isogenic ETEC 1766a strain with atleAmutation showed an adhesion level similar to that of the wild-type strain, suggesting that the gene does not direct attachment to Caco-2 cells. However, expression oftleAconferred the capacity for adherence to nonadherentE. coliHB101. This effect coincided with the detection of TleA on the surface of nonpermeabilized bacteria, while, conversely, ETEC 1766a seems to secrete most of the produced autotransporter to the medium. On the other hand, TleA was capable of degrading bovine submaxillary mucin and leukocyte surface glycoproteins CD45 and P-selectin glycoprotein ligand 1 (PSGL-1). These results suggest that TleA promotes colonization of the intestinal epithelium and that it may modulate the host immune response.


2006 ◽  
Vol 74 (6) ◽  
pp. 3488-3497 ◽  
Author(s):  
Lena Jansson ◽  
Joshua Tobias ◽  
Michael Lebens ◽  
Ann-Mari Svennerholm ◽  
Susann Teneberg

ABSTRACT Bacterial adherence to mucosal surfaces is an important virulence trait of pathogenic bacteria. Adhesion of enterotoxigenic Escherichia coli (ETEC) to the intestine is mediated by a number of antigenically distinct colonization factors (CFs). One of the most common CFs is CFA/I. This has a fimbrial structure composed of a major repeating subunit, CfaB, and a single tip subunit, CfaE. The potential carbohydrate recognition by CFA/I was investigated by binding CFA/I-fimbriated bacteria and purified CFA/I fimbriae to a large number of variant glycosphingolipids separated on thin-layer chromatograms. For both fimbriated bacteria and purified fimbriae, specific interactions could be identified with a number of nonacid glycosphingolipids. These included glucosylceramide, lactosylceramide with phytosphingosine and/or hydroxy fatty acids, neolactotetraosylceramide, gangliotriaosylceramide, gangliotetraosylceramide, the H5 type 2 pentaglycosylceramide, the Lea-5 glycosphingolipid, the Lex-5 glycosphingolipid, and the Ley-6 glycosphingolipid. These glycosphingolipids were also recognized by recombinant E. coli expressing CFA/I in the absence of tip protein CfaE, as well as by purified fimbriae from the same strain. This demonstrates that the glycosphingolipid-binding capacity of CFA/I resides in the major CfaB subunit.


2013 ◽  
Vol 7 (02) ◽  
pp. 090-100 ◽  
Author(s):  
Atef M El-Gendy ◽  
Adel Mansour ◽  
Hind I Shaheen ◽  
Marshall R Monteville ◽  
Adam W Armstrong ◽  
...  

Introduction: One approach to control enterotoxigenic Escherichia coli (ETEC) infections has been to develop vaccines focused on inducing protective immunity against surface expressed antigenic factors. One such factor is coli surface antigen 6 (CS6); ETEC isolates expressing CS6 may also simultaneously co-express surface antigens CS4 or CS5. However, there is little information regarding the inter-relationships of isolates expressing the CS6 antigen alone or in combination with CS4 or CS5. Methodology: A total of 62 CS6-associated ETEC isolates were evaluated for their antimicrobial susceptibility, mechanisms of resistance, toxin genes, colonization factor expression, and XbaI-pulsed-field gel electrophoretic profiles. Results: We observed 46 XbaI profiles; 31 were exclusive to ETEC expressing CS6 alone and 15 among the ETEC co-expressing CS4 or CS5. Nearly half (47%) of these isolates were resistant to ampicillin, a third (37%) of the isolates were resistant to trimethoprim-sulfamethoxazole, and 24% of the isolates were tetracycline-resistant. A blaTEM gene was detected in 24 (83%) ampicillin-resistant isolates. Trimethoprim-sulfamethoxazole-resistant isolates (n = 23) carried either sulI (n = 1, 4%), sulII (n = 8, 35%) or both genes (n = 10, 43%); 4 had no detectable sul gene. Conclusions: Our results show a lack of clonality among Egypt CS6 E. coli isolates and supports the use and the further research on vaccines targeting this cell surface antigen.


Microbiology ◽  
1999 ◽  
Vol 145 (7) ◽  
pp. 1809-1816 ◽  
Author(s):  
Oscar G. Gómez-Duarte ◽  
Alejandro Ruiz-Tagle ◽  
Diana C. Gómez ◽  
Gloria I. Viboud ◽  
Karen G. Jarvis ◽  
...  

2000 ◽  
Vol 68 (5) ◽  
pp. 2766-2774 ◽  
Author(s):  
James M. Fleckenstein ◽  
Luther E. Lindler ◽  
Eric A. Elsinghorst ◽  
James B. Dale

ABSTRACT Studies of the pathogenesis of enterotoxigenic Escherichia coli (ETEC) have largely centered on extrachromosomal determinants of virulence, in particular the plasmid-encoded heat-labile (LT) and heat-stable enterotoxins and the colonization factor antigens. ETEC causes illnesses that range from mild diarrhea to severe cholera-like disease. These differences in disease severity are not readily accounted for by our current understanding of ETEC pathogenesis. Here we demonstrate that Tia, a putative adhesin of ETECH10407 , is encoded on a large chromosomal element of approximately 46 kb that shares multiple features with previously described E. coli pathogenicity islands. Further analysis of the region downstream from tia revealed the presence of several candidate open reading frames (ORFs) in the same transcriptional orientation as tia. The putative proteins encoded by these ORFs bear multiple motifs associated with bacterial secretion apparatuses. An in-frame deletion in one candidate gene identified here as leoA (labile enterotoxin output) resulted in marked diminution of secretion of the LT enterotoxin and lack of fluid accumulation in a rabbit ileal loop model of infection. Although previous studies have suggested that E. coli lacks the capacity to secrete LT, our studies show that maximal release of LT from the periplasm of H10407 is dependent on one or more elements encoded on a pathogenicity island.


2007 ◽  
Vol 189 (24) ◽  
pp. 9145-9149 ◽  
Author(s):  
Oscar G. Gomez-Duarte ◽  
Sujay Chattopadhyay ◽  
Scott J. Weissman ◽  
Jorge A. Giron ◽  
James B. Kaper ◽  
...  

ABSTRACT Enterotoxigenic Escherichia coli (ETEC) strains produce a type IV pilus named Longus. We identified a 16-gene cluster involved in the biosynthesis of Longus that has 57 to 95% identity at the protein level to CFA/III, another type IV pilus of ETEC. Alleles of the Longus structural subunit gene lngA demonstrate a diversity of 12 to 19% at the protein level with strong positive selection for point replacements and horizontal transfer.


2005 ◽  
Vol 18 (2) ◽  
pp. 264-292 ◽  
Author(s):  
Alain L. Servin

SUMMARY Over the last few years, dramatic increases in our knowledge about diffusely adhering Escherichia coli (DAEC) pathogenesis have taken place. The typical class of DAEC includes E. coli strains harboring AfaE-I, AfaE-II, AfaE-III, AfaE-V, Dr, Dr-II, F1845, and NFA-I adhesins (Afa/Dr DAEC); these strains (i) have an identical genetic organization and (ii) allow binding to human decay-accelerating factor (DAF) (Afa/DrDAF subclass) or carcinoembryonic antigen (CEA) (Afa/DrCEA subclass). The atypical class of DAEC includes two subclasses of strains; the atypical subclass 1 includes E. coli strains that express AfaE-VII, AfaE-VIII, AAF-I, AAF-II, and AAF-III adhesins, which (i) have an identical genetic organization and (ii) do not bind to human DAF, and the atypical subclass 2 includes E. coli strains that harbor Afa/Dr adhesins or others adhesins promoting diffuse adhesion, together with pathogenicity islands such as the LEE pathogenicity island (DA-EPEC). In this review, the focus is on Afa/Dr DAEC strains that have been found to be associated with urinary tract infections and with enteric infection. The review aims to provide a broad overview and update of the virulence aspects of these intriguing pathogens. Epidemiological studies, diagnostic techniques, characteristic molecular features of Afa/Dr operons, and the respective role of Afa/Dr adhesins and invasins in pathogenesis are described. Following the recognition of membrane-bound receptors, including type IV collagen, DAF, CEACAM1, CEA, and CEACAM6, by Afa/Dr adhesins, activation of signal transduction pathways leads to structural and functional injuries at brush border and junctional domains and to proinflammatory responses in polarized intestinal cells. In addition, uropathogenic Afa/Dr DAEC strains, following recognition of β1 integrin as a receptor, enter epithelial cells by a zipper-like, raft- and microtubule-dependent mechanism. Finally, the presence of other, unknown virulence factors and the way that an Afa/Dr DAEC strain emerges from the human intestinal microbiota as a “silent pathogen” are discussed.


2006 ◽  
Vol 75 (1) ◽  
pp. 252-259 ◽  
Author(s):  
T. S. Coster ◽  
M. K. Wolf ◽  
E. R. Hall ◽  
F. J. Cassels ◽  
D. N. Taylor ◽  
...  

ABSTRACT In order to test vaccines against enterotoxigenic Escherichia coli (ETEC)-induced diarrhea, challenge models are needed. In this study we compared clinical and immunological responses after North American volunteers were orally challenged by two ETEC strains. Groups of approximately eight volunteers received 109 or 1010 CFU of E. coli B7A (LT+ ST+ CS6+) or 108 or 109 CFU of E. coli H10407 (LT+ ST+ CFA/I+). About 75% of the volunteers developed diarrhea after challenge with 1010 CFU B7A or either dose of H10407. B7A had a shorter incubation period than H10407 (P = 0.001) and caused milder illness; the mean diarrheal output after H10407 challenge was nearly twice that after B7A challenge (P = 0.01). Females had more abdominal complaints, and males had a higher incidence of fever. Ciprofloxacin generally diminished or stopped symptoms and shedding by the second day of antibiotic treatment, but four subjects shed for one to four additional days. The immune responses to colonization factors CS6 and colonization factor antigen I (CFA/I) and to heat-labile toxin (LT) were measured. The responses to CFA/I were the most robust responses; all volunteers who received H10407 had serum immunoglobulin A (IgA) and IgG responses, and all but one volunteer had antibody-secreting cell (ASC) responses. One-half the volunteers who received B7A had an ASC response to CS6, and about one-third had serum IgA or IgG responses. Despite the differences in clinical illness and immune responses to colonization factors, the immune responses to LT were similar in all groups and were intermediate between the CFA/I and CS6 responses. These results provide standards for immune responses after ETEC vaccination.


Sign in / Sign up

Export Citation Format

Share Document