scholarly journals TleA, a Tsh-Like Autotransporter Identified in a Human Enterotoxigenic Escherichia coli Strain

2015 ◽  
Vol 83 (5) ◽  
pp. 1893-1903 ◽  
Author(s):  
Daniela Gutiérrez ◽  
Mirka Pardo ◽  
David Montero ◽  
Angel Oñate ◽  
Mauricio J. Farfán ◽  
...  

EnterotoxigenicEscherichia coli(ETEC), a leading cause of acute diarrhea, colonizes the intestine by means of adhesins. However, 15 to 50% of clinical isolates are negative for known adhesins, making it difficult to identify antigens for broad-coverage vaccines. The ETEC strain 1766a, obtained from a child with watery diarrhea in Chile, harbors the colonization factor CS23 but is negative for other known adhesins. One clone, derived from an ETEC 1766a genomic library (clone G10), did not produce CS23 yet was capable of adhering to Caco-2 cells. The goal of this study was to identify the gene responsible for this capacity. Random transposon-based mutagenesis allowed the identification of a 4,110-bp gene that codes for a homologue of the temperature-sensitive hemagglutinin (Tsh) autotransporter described in avianE. colistrains (97% identity, 90% coverage) and that is called TleA (Tsh-like ETEC autotransporter) herein. An isogenic ETEC 1766a strain with atleAmutation showed an adhesion level similar to that of the wild-type strain, suggesting that the gene does not direct attachment to Caco-2 cells. However, expression oftleAconferred the capacity for adherence to nonadherentE. coliHB101. This effect coincided with the detection of TleA on the surface of nonpermeabilized bacteria, while, conversely, ETEC 1766a seems to secrete most of the produced autotransporter to the medium. On the other hand, TleA was capable of degrading bovine submaxillary mucin and leukocyte surface glycoproteins CD45 and P-selectin glycoprotein ligand 1 (PSGL-1). These results suggest that TleA promotes colonization of the intestinal epithelium and that it may modulate the host immune response.

2015 ◽  
Vol 81 (20) ◽  
pp. 7135-7142 ◽  
Author(s):  
Marie-Anne Tartanson ◽  
Laurence Soussan ◽  
Matthieu Rivallin ◽  
Sophie Pecastaings ◽  
Cristian V. Chis ◽  
...  

ABSTRACTThe bactericidal activity of an Al2O3-TiO2-Ag granular material against anEscherichia colistrain was confirmed by a culture-based method. In particular, 100% of microorganisms were permanently inactivated in 30 to 45 min. The present work aimed to investigate the mechanisms of the bactericidal action of this material and their dynamics onEscherichia coliusing different techniques. Observations by transmission electron microscopy (TEM) at different times of disinfection revealed morphological changes in the bacteria as soon as they were put in contact with the material. Notably highlighted were cell membrane damage; cytoplasm detachment; formation of vacuoles, possibly due to DNA condensation, in association with regions exhibiting different levels of electron density; and membrane lysis. PCR and flow cytometry analyses were used to confirm and quantify the observations of cell integrity. The direct exposure of cells to silver, combined with the oxidative stress induced by the reactive oxygen species (ROS) generated, was identified to be responsible for these morphological alterations. From the first 5 min of treatment with the Al2O3-TiO2-Ag material, 98% ofE. coliisolates were lysed. From 30 min, cell viability decreased to reach total inactivation, although approximately 1% of permeableE. colicells and 1% of intact cells (105genomic units · ml−1) were evidenced. This study demonstrates that the bactericidal effect of the material results from a synergic action of desorbed and supported silver. Supported silver was shown to generate the ROS evidenced.


2015 ◽  
Vol 23 (1) ◽  
pp. 27-36 ◽  
Author(s):  
Taufiqur Rahman Bhuiyan ◽  
Mohammad Rubel Hoq ◽  
Naoshin Sharmin Nishat ◽  
Deena Al Mahbuba ◽  
Rasheduzzaman Rashu ◽  
...  

ABSTRACTVibrio choleraeand enterotoxigenicEscherichia coli(ETEC) are noninvasive mucosal pathogens that cause acute watery diarrhea in people in developing countries. Direct assessment of the mucosal immune responses to these pathogens is problematic. Surrogate markers of local mucosal responses in blood are increasingly being studied to determine the mucosal immune responses after infection. However, the volume of blood available in children and infants has limited this approach. We assessed whether an approach that first isolates β7-positive cells from a small volume of blood would allow measurement of the antigen-specific immune responses in patients with cholera and ETEC infection. β7 is a cell surface marker associated with mucosal homing. We isolated β7-expressing cells from blood on days 2, 7, and 30 and used an enzyme-linked immunosorbent spot (ELISPOT) assay to assess the gut-homing antibody-secreting cells (ASCs) specific to pathogen antigens. Patients with ETEC diarrhea showed a significant increase in toxin-specific gut-homing ASCs at day 7 compared to the levels at days 2 and 30 after onset of illness and to the levels in healthy controls. Similar elevations of responses to the ETEC colonization factors (CFs) CS6 and CFA/I were observed in patients infected with CS6- and CFA/I-positive ETEC strains. Antigen-specific gut-homing ASCs to the B subunit of cholera toxin and cholera-specific lipopolysaccharides (LPS) were also observed on day 7 after the onset of cholera using this approach. This study demonstrates that a simple ELISPOT assay can be used to study the mucosal immunity to specific antigens using a cell-sorting protocol to isolate mucosal homing cells, facilitating measurement of mucosal responses in children following infection or vaccination.


2017 ◽  
Vol 5 (19) ◽  
Author(s):  
Lutz Geue ◽  
Christian Menge ◽  
Christian Berens ◽  
Stefanie A. Barth

ABSTRACT Shiga toxin-producing Escherichia coli (STEC) are important zoonotic enteric pathogens with the main reservoir in cattle. Here, we present the genomes of two STEC strains and one atypical enteropathogenic E. coli strain from cattle origin, obtained during a longitudinal study in German cattle herds.


2001 ◽  
Vol 69 (9) ◽  
pp. 5864-5873 ◽  
Author(s):  
Tooru Taniguchi ◽  
Yukihiro Akeda ◽  
Ayako Haba ◽  
Yoko Yasuda ◽  
Koichiro Yamamoto ◽  
...  

ABSTRACT The assembly of pilus colonization factor antigen III (CFA/III) of enterotoxigenic Escherichia coli (ETEC) requires the processing of CFA/III major pilin (CofA) by a prepilin peptidase (CofP), similar to other type IV pilus formation systems. CofA is produced initially as a 26.5-kDa preform pilin (prepilin) and then processed to a 20.5-kDa mature pilin by CofP which is predicted to be localized in the inner membrane. In the present experiment, we determined the nucleotide sequence of the whole region for CFA/III formation and identified a cluster of 14 genes, includingcofA and cofP. Several proteins encoded bycof genes were similar to previously described proteins, such as the toxin-coregulated pili of Vibrio cholerae and the bundle-forming pili of enteropathogenic E. coli. The G+C content of the cof gene cluster was 37%, which was significantly lower than the average for the E. coli genome (50%). The introduction of a recombinant plasmid containing thecof gene cluster into the E. coli K-12 strain conferred CFA/III biogenesis and the ability of adhesion to the human colon carcinoma cell line Caco-2. This is the first report of a complete nucleotide sequence of the type IV pili found in human ETEC, and our results provide a useful model for studying the molecular mechanism of CFA/III biogenesis and the role of CFA/III in ETEC infection.


2004 ◽  
Vol 70 (8) ◽  
pp. 4499-4504 ◽  
Author(s):  
Manuel Ferrer ◽  
Tatyana N. Chernikova ◽  
Kenneth N. Timmis ◽  
Peter N. Golyshin

ABSTRACT A new principle for expression of heat-sensitive recombinant proteins in Escherichia coli at temperatures close to 4°C was experimentally evaluated. This principle was based on simultaneous expression of the target protein with chaperones (Cpn60 and Cpn10) from a psychrophilic bacterium, Oleispira antarctica RB8T, that allow E. coli to grow at high rates at 4°C (maximum growth rate, 0.28 h−1) (M. Ferrer, T. N. Chernikova, M. Yakimov, P. N. Golyshin, and K. N. Timmis, Nat. Biotechnol. 21:1266-1267, 2003). The expression of a temperature-sensitive esterase in this host at 4 to 10°C yielded enzyme specific activity that was 180-fold higher than the activity purified from the non-chaperonin-producing E. coli strain grown at 37°C (32,380 versus 190 μmol min−1 g−1). We present evidence that the increased specific activity was not due to the low growth temperature per se but was due to the fact that low temperature was beneficial to folding, with or without chaperones. This is the first report of successful use of a chaperone-based E. coli strain to express heat-labile recombinant proteins at temperatures below the theoretical minimum growth temperature of a common E. coli strain (7.5°C).


Microbiology ◽  
2006 ◽  
Vol 152 (6) ◽  
pp. 1799-1806 ◽  
Author(s):  
Viktoria Roos ◽  
Mark A. Schembri ◽  
Glen C. Ulett ◽  
Per Klemm

Escherichia coli is the most common organism associated with asymptomatic bacteriuria (ABU). In contrast to uropathogenic E. coli (UPEC), which causes symptomatic urinary tract infection (UTI), very little is known about the mechanisms by which these strains colonize the urinary tract. Bacterial adhesion conferred by specific surface-associated adhesins is normally considered as a prerequisite for colonization of the urinary tract. The prototype ABU E. coli strain 83972 was originally isolated from a girl who had carried it asymptomatically for 3 years. This study characterized the molecular status of one of the primary adhesion factors known to be associated with UTI, namely F1C fimbriae, encoded by the foc gene cluster. F1C fimbriae recognize receptors present in the human kidney and bladder. Expression of the foc genes was found to be up-regulated in human urine. It was also shown that although strain 83972 contains a seemingly intact foc gene cluster, F1C fimbriae are not expressed. Sequencing and genetic complementation revealed that the focD gene, encoding a component of the F1C transport and assembly system, was non-functional, explaining the inability of strain 83972 to express this adhesin. The data imply that E. coli 83972 has lost its ability to express this important colonization factor as a result of host-driven evolution. The ancestor of the strain seems to have been a pyelonephritis strain of phylogenetic group B2. Strain 83972 therefore represents an example of bacterial adaptation from pathogenicity to commensalism through virulence factor loss.


2013 ◽  
Vol 80 (4) ◽  
pp. 1394-1402 ◽  
Author(s):  
Masahiro Kusumoto ◽  
Dai Fukamizu ◽  
Yoshitoshi Ogura ◽  
Eiji Yoshida ◽  
Fumiko Yamamoto ◽  
...  

ABSTRACTInsertion sequences (ISs) are the simplest transposable elements and are widely distributed in bacteria; however, they also play important roles in genome evolution. We recently identified a protein called IS excision enhancer (IEE) in enterohemorrhagicEscherichia coli(EHEC) O157. IEE promotes the excision of IS elements belonging to the IS3family, such as IS629, as well as several other families. IEE-mediated IS excision generates various genomic deletions that lead to the diversification of the bacterial genome. IEE has been found in a broad range of bacterial species; however, among sequencedE. colistrains, IEE is primarily found in EHEC isolates. In this study, we investigated non-EHEC pathogenicE. colistrains isolated from domestic animals and found that IEE is distributed in specific lineages of enterotoxigenicE. coli(ETEC) strains of serotypes O139 or O149 isolated from swine. Theieegene is located within integrative elements that are similar to SpLE1 of EHEC O157. Alliee-positive ETEC lineages also contained multiple copies of IS629, a preferred substrate of IEE, and their genomic locations varied significantly between strains, as observed in O157. These data suggest that IEE may have been transferred among EHEC and ETEC in swine via SpLE1 or SpLE1-like integrative elements. In addition, IS629is actively moving in the ETEC O139 and O149 genomes and, as in EHEC O157, is promoting the diversification of these genomes in combination with IEE.


2006 ◽  
Vol 74 (6) ◽  
pp. 3488-3497 ◽  
Author(s):  
Lena Jansson ◽  
Joshua Tobias ◽  
Michael Lebens ◽  
Ann-Mari Svennerholm ◽  
Susann Teneberg

ABSTRACT Bacterial adherence to mucosal surfaces is an important virulence trait of pathogenic bacteria. Adhesion of enterotoxigenic Escherichia coli (ETEC) to the intestine is mediated by a number of antigenically distinct colonization factors (CFs). One of the most common CFs is CFA/I. This has a fimbrial structure composed of a major repeating subunit, CfaB, and a single tip subunit, CfaE. The potential carbohydrate recognition by CFA/I was investigated by binding CFA/I-fimbriated bacteria and purified CFA/I fimbriae to a large number of variant glycosphingolipids separated on thin-layer chromatograms. For both fimbriated bacteria and purified fimbriae, specific interactions could be identified with a number of nonacid glycosphingolipids. These included glucosylceramide, lactosylceramide with phytosphingosine and/or hydroxy fatty acids, neolactotetraosylceramide, gangliotriaosylceramide, gangliotetraosylceramide, the H5 type 2 pentaglycosylceramide, the Lea-5 glycosphingolipid, the Lex-5 glycosphingolipid, and the Ley-6 glycosphingolipid. These glycosphingolipids were also recognized by recombinant E. coli expressing CFA/I in the absence of tip protein CfaE, as well as by purified fimbriae from the same strain. This demonstrates that the glycosphingolipid-binding capacity of CFA/I resides in the major CfaB subunit.


2013 ◽  
Vol 81 (4) ◽  
pp. 1078-1089 ◽  
Author(s):  
Yogitha N. Srikhanta ◽  
Dianna M. Hocking ◽  
Judyta Praszkier ◽  
Matthew J. Wakefield ◽  
Roy M. Robins-Browne ◽  
...  

ABSTRACTAraC-like regulators play a key role in the expression of virulence factors in enteric pathogens, such as enteropathogenicEscherichia coli(EPEC), enterotoxigenicE. coli, enteroaggregativeE. coli, andCitrobacter rodentium. Bioinformatic analysis of the genome of rabbit-specific EPEC (REPEC) strain E22 (O103:H2) revealed the presence of a gene encoding an AraC-like regulatory protein, RegR, which shares 71% identity to the global virulence regulator, RegA, ofC. rodentium. Microarray analysis demonstrated that RegR exerts 25- to 400-fold activation on transcription of several genes encoding putative virulence-associated factors, including a fimbrial operon (SEF14), a serine protease, and an autotransporter adhesin. These observations were confirmed by proteomic analysis of secreted and heat-extracted surface-associated proteins. The mechanism of RegR-mediated activation was investigated by using its most highly upregulated gene target,sefA. Transcriptional analyses and electrophoretic mobility shift assays showed that RegR activates the expression ofsefAby binding to a region upstream of thesefApromoter, thereby relieving gene silencing by the global regulatory protein H-NS. Moreover, RegR was found to contribute significantly to virulence in a rabbit infection experiment. Taken together, our findings indicate that RegR controls the expression of a series of accessory adhesins that significantly enhance the virulence of REPEC strain E22.


2016 ◽  
Vol 54 (4) ◽  
pp. 1074-1081 ◽  
Author(s):  
Masahiro Kusumoto ◽  
Yuna Hikoda ◽  
Yuki Fujii ◽  
Misato Murata ◽  
Hirotsugu Miyoshi ◽  
...  

EnterotoxigenicEscherichia coli(ETEC) and Shiga toxin-producingE. coli(STEC) are important causes of diarrhea and edema disease in swine. The majority of swine-pathogenicE. colistrains belong to a limited range of O serogroups, including O8, O138, O139, O141, O147, O149, and O157, which are the most frequently reported strains worldwide. However, the circumstances of ETEC and STEC infections in Japan remain unknown; there have been few reports on the prevalence or characterization of swine-pathogenicE. coli. In the present study, we determined the O serogroups of 967E. coliisolates collected between 1991 and 2014 from diseased swine in Japan, and we found that O139, O149, O116, and OSB9 (O serogroup ofShigella boydiitype 9) were the predominant serogroups. We further analyzed these four O serogroups using pulsed-field gel electrophoresis (PFGE), multilocus sequence typing, and virulence factor profiling. Most of the O139 and O149 strains formed serogroup-specific PFGE clusters (clusters I and II, respectively), whereas the O116 and OSB9 strains were grouped together in the same cluster (cluster III). All of the cluster III strains belonged to a single sequence type (ST88) and carried genes encoding both enterotoxin and Shiga toxin. This PFGE cluster III/ST88 lineage exhibited a high level of multidrug resistance (to a median of 10 antimicrobials). Notably, these bacteria were resistant to fluoroquinolones. Thus, this lineage should be considered a significant risk to animal production due to the toxigenicity and antimicrobial resistance of these bacteria.


Sign in / Sign up

Export Citation Format

Share Document