scholarly journals Human Immunodeficiency Virus Type 1 gp120 Reprogramming of CD4+ T-Cell Migration Provides a Mechanism for Lymphadenopathy

2009 ◽  
Vol 83 (11) ◽  
pp. 5765-5772 ◽  
Author(s):  
Daniel S. Green ◽  
David M. Center ◽  
William W. Cruikshank

ABSTRACT Infection by human immunodeficiency virus type 1 (HIV-1) is associated with decreases in peripheral CD4+ T cells and development of lymphadenopathy. The precise mechanisms by which HIV-1 induces these changes have not been elucidated. T-cell trafficking through lymphoid tissues is facilitated by CCL21-mediated entry and sphingosine-1-phosphate (S1P)-mediated egress. Having previously determined that HIV-1 envelop glycoprotein, gp120, directly alters T-cell migration, we investigated whether gp120 without HIV-1 infection could influence the responses of CD4+ T cells to the signals involved in T-cell trafficking through lymph tissue. Incubation of normal human T cells with gp120 for 1 h resulted in reprogramming of CD4 T-cell migratory responses by increasing sensitivity to CCL20 and CCL21 and complete inhibition of migration to S1P. Incubation of human T cells with gp120 prior to injection into NOD.CB17-Prkdc scid /J mice resulted in increases in lymph node accumulation of CD4+ T cells, with reciprocal decreases in blood and spleen compared to T cells not exposed to gp120. The effects of gp120 required CD4 signaling mediated through p56lck. These findings suggest that gp120 alone can alter CD4+ influx and efflux from lymph nodes in a fashion consistent with the development of lymphopenia and lymphadenopathy.

2002 ◽  
Vol 76 (12) ◽  
pp. 5966-5973 ◽  
Author(s):  
Jérôme Estaquier ◽  
Jean-Daniel Lelièvre ◽  
Frédéric Petit ◽  
Thomas Brunner ◽  
Laure Moutouh-de Parseval ◽  
...  

ABSTRACT Apoptosis of peripheral blood T cells plays an important role in the pathogenesis of human immunodeficiency virus (HIV) infection. In this study, we found that HIV type 1 (HIV-1) primes CD4+ T cells from healthy donors for apoptosis, which occurs after CD95 ligation or CD3-T-cell receptor (TCR) stimulation. CD95-mediated death did not depend on CD4 T-cell infection, since it occurred in the presence of the reverse transcriptase inhibitor didanosine (ddI). In contrast, apoptosis induced by productive infection (CD3-TCR stimulation) is prevented by both CD95 decoy receptor and ddI. Our data suggest that HIV-1 triggers at least two distinct death pathways: a CD95-dependent pathway that does not require viral replication and a viral replication-mediated cell death independent of the CD95 pathway. Further experiments indicated that saquinavir, a protease inhibitor, at a 0.2 μM concentration, decreased HIV-mediated CD95 expression and thus cell death, which is independent of its role in inhibiting viral replication. However, treatment of peripheral blood mononuclear cells from healthy donors with a higher concentration (10 μM) of an HIV protease inhibitor, saquinavir or indinavir, induced both a loss in mitochondrial membrane potential (ΔΨm) and cell death. Thus, protease inhibitors have the potential for both beneficial and detrimental effects on CD4+ T cells independent of their antiretroviral effects.


2005 ◽  
Vol 79 (5) ◽  
pp. 3195-3199 ◽  
Author(s):  
Jean-Daniel Lelièvre ◽  
Frédéric Petit ◽  
Damien Arnoult ◽  
Jean-Claude Ameisen ◽  
Jérôme Estaquier

ABSTRACT Fas-mediated T-cell death is known to occur during human immunodeficiency virus (HIV) infection. In this study, we found that HIV type 1 LAI (HIV-1LAI) primes CD8+ T cells from healthy donors for apoptosis, which occurs after Fas ligation. This effect is counteracted by a broad caspase inhibitor (zVAD-fmk). Fas-mediated cell death does not depend on CD8+ T-cell infection, because it occurred in the presence of reverse transcriptase inhibitors. However, purified CD8+ T cells are sensitive to Fas only in the presence of soluble CD4. Finally, we found that interleukin 7 (IL-7) increases Fas-mediated CD4+ and CD8+ T-cell death induced by HIV-1LAI. Since high levels of IL-7 are a marker of poor prognosis during HIV infection, our data suggest that enhancement of Fas-mediated T-cell death by HIV-1LAI and IL-7 is one of the mechanisms involved in progression to AIDS.


2007 ◽  
Vol 81 (11) ◽  
pp. 5547-5560 ◽  
Author(s):  
Clare Jolly ◽  
Ivonne Mitar ◽  
Quentin J. Sattentau

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) infection of CD4+ T cells leads to the production of new virions that assemble at the plasma membrane. Gag and Env accumulate in the context of lipid rafts at the inner and outer leaflets of the plasma membrane, respectively, forming polarized domains from which HIV-1 buds. HIV-1 budding can result in either release of cell-free virions or direct cell-cell spread via a virological synapse (VS). The recruitment of Gag and Env to these plasma membrane caps in T cells is poorly understood but may require elements of the T-cell secretory apparatus coordinated by the cytoskeleton. Using fixed-cell immunofluorescence labeling and confocal microscopy, we observed a high percentage of HIV-1-infected T cells with polarized Env and Gag in capped, lipid raft-like assembly domains. Treatment of infected T cells with inhibitors of actin or tubulin remodeling disrupted Gag and Env compartmentalization within the polarized raft-like domains. Depolymerization of the actin cytoskeleton reduced Gag release and viral infectivity, and actin and tubulin inhibitors reduced Env incorporation into virions. Live- and fixed-cell confocal imaging and assay of de novo DNA synthesis by real-time PCR allowed quantification of HIV-1 cell-cell transfer. Inhibition of actin and tubulin remodeling in infected cells interfered with cell-cell spread across a VS and reduced new viral DNA synthesis. Based on these data, we propose that HIV-1 requires both actin and tubulin components of the T-cell cytoskeleton to direct its assembly and budding and to elaborate a functional VS.


1996 ◽  
Vol 40 (11) ◽  
pp. 827-835 ◽  
Author(s):  
Yukako Ohshiro ◽  
Tsutomu Murakami ◽  
Kazuhiro Matsuda ◽  
Kiyoshi Nishioka ◽  
Keiichi Yoshida ◽  
...  

Blood ◽  
1996 ◽  
Vol 88 (5) ◽  
pp. 1741-1746 ◽  
Author(s):  
CB Baumler ◽  
T Bohler ◽  
I Herr ◽  
A Benner ◽  
PH Krammer ◽  
...  

Abstract Increased apoptosis of CD4+ T cells is considered to be involved in CD4+ T-cell depletion in human immunodeficiency virus type-1 (HIV-1)- infected individuals progressing toward acquired immunodeficiency syndrome (AIDS). We have recently shown that CD95 (APO-1/Fas) expression is strongly increased in T cells of HIV-1-infected children. In this report we provide further evidence for a deregulated CD95 system in AIDS. CD95 expression in HIV-1+ children is not restricted to previously activated CD45RO+ T cells but is also increased on freshly isolated naive CD45RA+ T cells. In addition, specific CD95-mediated apoptosis is enhanced in both CD4+ and CD8+ T cells. Furthermore, levels of CD95 ligand mRNA are profoundly increased. Specific T-cell receptor/CD3-triggered apoptosis in HIV-1+ children is more enhanced in CD8+ than in CD4+ T cells. Accelerated activation induced cell death of T cells could partially be inhibited by blocking anti-CD95 antibody fragments. These data suggest an involvement of the CD95 receptor/ligand system in T-cell depletion and apoptosis in AIDS and may open new avenues of rational intervention strategies.


1999 ◽  
Vol 73 (4) ◽  
pp. 3449-3454 ◽  
Author(s):  
Ines Frank ◽  
Laco Kacani ◽  
Heribert Stoiber ◽  
Hella Stössel ◽  
Martin Spruth ◽  
...  

ABSTRACT During the budding process, human immunodeficiency virus type 1 (HIV-1) acquires cell surface molecules; thus, the viral surface of HIV-1 reflects the antigenic pattern of the host cell. To determine the source of HIV-1 released from cocultures of dendritic cells (DC) with T cells, immature DC (imDC), mature DC (mDC), T cells, and their cocultures were infected with different HIV-1 isolates. The macrophage-tropic HIV-1 isolate Ba-L allowed viral replication in both imDC and mDC, whereas the T-cell-line-tropic primary isolate PI21 replicated in mDC only. By a virus capture assay, HIV-1 was shown to carry a T-cell- or DC-specific cell surface pattern after production by T cells or DC, respectively. Upon cocultivation of HIV-1-pulsed DC with T cells, HIV-1 exclusively displayed a typical T-cell pattern. Additionally, functional analysis revealed that HIV-1 released from imDC–T-cell cocultures was more infectious than HIV-1 derived from mDC–T-cell cocultures and from cultures of DC, T cells, or peripheral blood mononuclear cells alone. Therefore, we conclude that the interaction of HIV-1-pulsed imDC with T cells in vivo might generate highly infectious virus which primarily originates from T cells.


2003 ◽  
Vol 77 (2) ◽  
pp. 1163-1174 ◽  
Author(s):  
Ronald L. Willey ◽  
Russ Byrum ◽  
Michael Piatak ◽  
Young B. Kim ◽  
Michael W. Cho ◽  
...  

ABSTRACT An effective vaccine against the human immunodeficiency virus type 1 (HIV-1) will very likely have to elicit both cellular and humoral immune responses to control HIV-1 strains of diverse geographic and genetic origins. We have utilized a pathogenic chimeric simian-human immunodeficiency virus (SHIV) rhesus macaque animal model system to evaluate the protective efficacy of a vaccine regimen that uses recombinant vaccinia viruses expressing simian immunodeficiency virus (SIV) and HIV-1 structural proteins in combination with intact inactivated SIV and HIV-1 particles. Following virus challenge, control animals experienced a rapid and complete loss of CD4+ T cells, sustained high viral loads, and developed clinical disease by 17 to 21 weeks. Although all of the vaccinated monkeys became infected, they displayed reduced postpeak viremia, had no significant loss of CD4+ T cells, and have remained healthy for more than 15 months postinfection. CD8+ T-cell and neutralizing antibody responses in vaccinated animals following challenge were demonstrable. Despite the control of disease, virus was readily isolated from the circulating peripheral blood mononuclear cells of all vaccinees at 22 weeks postchallenge, indicating that immunologic control was incomplete. Virus recovered from the animal with the lowest postchallenge viremia generated high virus loads and an irreversible loss of CD4+ T-cell loss following its inoculation into a naïve animal. These results indicate that despite the protection from SHIV-induced disease, the vaccinated animals still harbored replication-competent and pathogenic virus.


2007 ◽  
Vol 81 (11) ◽  
pp. 5460-5471 ◽  
Author(s):  
J. William Critchfield ◽  
Donna Lemongello ◽  
Digna H. Walker ◽  
Juan C. Garcia ◽  
David M. Asmuth ◽  
...  

ABSTRACT The intestinal tract is a lymphocyte-rich site that undergoes severe depletion of memory CD4+ T cells within days of simian immunodeficiency virus or human immunodeficiency virus type 1 (HIV-1) infection. An ensuing influx of virus-specific CD8+ T cells, which persist throughout the chronic phase of infection, has also been documented in the gastrointestinal tract. However, little is known of the functionality of these effector cells or their relationship to the disease course. In this study, we measured CD8+ T-cell responses to HIV-1 peptides in paired rectal and blood samples from chronically infected patients. In both blood and rectum, there was an immunodominant CD8+ T-cell response to HIV Gag compared to Pol and Env (P < 0.01). In contrast, cytomegalovirus pp65 peptides elicited gamma interferon (IFN-γ) secretion strongly in peripheral blood mononuclear cells (PBMC) but weakly in rectal CD8+ T cells (P = 0.015). Upon stimulation with HIV peptides, CD8+ T cells from both sites were capable of mounting complex responses including degranulation (CD107 expression) and IFN-γ and tumor necrosis factor alpha (TNF-α) production. In rectal tissue, CD107 release was frequently coupled with production of IFN-γ or TNF-α. In patients not on antiretroviral therapy, the magnitude of Gag-specific responses, as a percentage of CD8+ T cells, was greater in the rectal mucosa than in PBMC (P = 0.054); however, the breakdown of responding cells into specific functional categories was similar in both sites. These findings demonstrate that rectal CD8+ T cells are capable of robust and varied HIV-1-specific responses and therefore likely play an active role in eliminating infected cells during chronic infection.


2007 ◽  
Vol 81 (18) ◽  
pp. 10009-10016 ◽  
Author(s):  
Xin Wang ◽  
Tomofumi Uto ◽  
Takami Akagi ◽  
Mitsuru Akashi ◽  
Masanori Baba

ABSTRACT The mainstream of recent anti-AIDS vaccines is a prime/boost approach with multiple doses of the target DNA of human immunodeficiency virus type 1 (HIV-1) and recombinant viral vectors. In this study, we have attempted to construct an efficient protein-based vaccine using biodegradable poly(γ-glutamic acid) (γ-PGA) nanoparticles (NPs), which are capable of inducing potent cellular immunity. A significant expansion of CD8+ T cells specific to the major histocompatibility complex class I-restricted gp120 epitope was observed in mice intranasally immunized once with gp120-carrying NPs but not with gp120 alone or gp120 together with the B-subunit of cholera toxin. Both the gp120-encapsulating and -immobilizing forms of NPs could induce antigen-specific spleen CD8+ T cells having a functional profile of cytotoxic T lymphocytes. Long-lived memory CD8+ T cells could also be elicited. Although a substantial decay in the effector memory T cells was observed over time in the immunized mice, the central memory T cells remained relatively constant from day 30 to day 238 after immunization. Furthermore, the memory CD8+ T cells rapidly expanded with boosting with the same immunogen. In addition, γ-PGA NPs were found to be a much stronger inducer of antigen-specific CD8+ T-cell responses than nonbiodegradable polystyrene NPs. Thus, γ-PGA NPs carrying various HIV-1 antigens may have great potential as a novel priming and/or boosting tool in current vaccination regimens for the induction of cellular immune responses.


Sign in / Sign up

Export Citation Format

Share Document