scholarly journals Characterization of a Novel Megabirnavirus from Sclerotinia sclerotiorum Reveals Horizontal Gene Transfer from Single-Stranded RNA Virus to Double-Stranded RNA Virus

2015 ◽  
Vol 89 (16) ◽  
pp. 8567-8579 ◽  
Author(s):  
Minghong Wang ◽  
Yong Wang ◽  
Xiangzhong Sun ◽  
Jiasen Cheng ◽  
Yanping Fu ◽  
...  

ABSTRACTMycoviruses have been detected in all major groups of filamentous fungi, and their study represents an important branch of virology. Here, we characterized a novel double-stranded RNA (dsRNA) mycovirus,Sclerotiniasclerotiorummegabirnavirus1(SsMBV1), in an apparently hypovirulent strain (SX466) ofSclerotinia sclerotiorum. Two similarly sized dsRNA segments (L1- and L2-dsRNA), the genome of SsMBV1, are packaged in rigid spherical particles purified from strain SX466. The full-length cDNA sequence of L1-dsRNA/SsMBV1 comprises two large open reading frames (ORF1 and ORF2), which encode a putative coat protein and an RNA-dependent RNA polymerase (RdRp), respectively. Phylogenetic analysis of the RdRp domain clearly indicates that SsMBV1 is related toRosellinia necatrixmegabirnavirus 1 (RnMBV1). L2-dsRNA/SsMBV1 comprises two nonoverlapping ORFs (ORFA and ORFB) encoding two hypothetical proteins with unknown functions. The 5′-terminal regions of L1- and L2-dsRNA/SsMBV1 share strictly conserved sequences and form stable stem-loop structures. Although L2-dsRNA/SsMBV1 is dispensable for replication, genome packaging, and pathogenicity of SsMBV1, it enhances transcript accumulation of L1-dsRNA/SsMBV1 and stability of virus-like particles (VLPs). Interestingly, a conserved papain-like protease domain similar to a multifunctional protein (p29) ofCryphonectriahypovirus 1 was detected in the ORFA-encoded protein of L2-dsRNA/SsMBV1. Phylogenetic analysis based on the protease domain suggests that horizontal gene transfer may have occurred from a single-stranded RNA (ssRNA) virus (hypovirus) to a dsRNA virus, SsMBV1. Our results reveal that SsMBV1 has a slight impact on the fundamental biological characteristics of its host regardless of the presence or absence of L2-dsRNA/SsMBV1.IMPORTANCEMycoviruses are widespread in all major fungal groups, and they possess diverse genomes of mostly ssRNA and dsRNA and, recently, circular ssDNA. Here, we have characterized a novel dsRNA virus (Sclerotinia sclerotiorummegabirnavirus 1 [SsMBV1]) that was isolated from an apparently hypovirulent strain, SX466, ofSclerotinia sclerotiorum. Although SsMBV1 is phylogenetically related to RnMBV1, SsMBV1 is markedly distinct from other reported megabirnaviruses with two features of VLPs and conserved domains. Our results convincingly showed that SsMBV1 is viable in the absence of L2-dsRNA/SsMBV1 (a potential large satellite-like RNA or genuine genomic virus component). More interestingly, we detected a conserved papain-like protease domain that commonly exists in ssRNA viruses, including members of the familiesPotyviridaeandHypoviridae. Phylogenetic analysis based on the protease domain suggests that horizontal gene transfer might have occurred from an ssRNA virus to a dsRNA virus, which may provide new insights into the evolutionary history of dsRNA and ssRNA viruses.

mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Ahmed M. Moustafa ◽  
Senthil Kumar Velusamy ◽  
Lidiya Denu ◽  
Apurva Narechania ◽  
Daniel H. Fine ◽  
...  

ABSTRACT Like the bacterial residents of the human gut, it is likely that many of the species in the human oral microbiota have evolved to better occupy and persist in their niche. Aggregatibacter actinomycetemcomitans (Aa) is both a common colonizer of the oral cavity and has been implicated in the pathogenesis of periodontal disease. Here, we present a whole-genome phylogenetic analysis of Aa isolates from humans and nonhuman primates that revealed an ancient origin for this species and a long history of association with the Catarrhini, the lineage that includes Old World monkeys (OWM) and humans. Further genomic analysis showed a strong association with the presence of a short-chain fatty acid (SCFA) catabolism locus (atoRDAEB) in many human isolates that was absent in almost all nonhuman OWM isolates. We show that this locus was likely acquired through horizontal gene transfer. When grown under conditions that are similar to those at the subgingival site of periodontitis (anaerobic, SCFA replete), Aa strains with atoRDAEB formed robust biofilms and showed upregulation of genes involved in virulence, colonization, and immune evasion. Both an isogenic deletion mutant and nonhuman primate isolates lacking the ato locus failed to grow in a robust biofilm under these conditions, but grew well under the carbohydrate-rich conditions similar to those found above the gumline. We propose that the acquisition of the ato locus was a key evolutionary step allowing Aa to utilize SCFAs, adapt, and modulate subgingival disease. IMPORTANCE There has been considerable interest in the impact of short-chain fatty acids (SCFAs) on inflammatory effects related to the microbiome. Here, we present evidence that SCFAs may also be important in disease by providing an energy source or disease-associated cue for colonizing pathogens. We propose that SCFAs allow Aggregatibacter actinomycetemcomitans (Aa) to adapt to the subgingival anaerobic environment, which is the site of human periodontitis. Under anaerobic, SCFA-rich conditions, human-derived Aa strains that possess butyrate metabolism genes form strong biofilms and upregulate virulence genes. Our phylogenetic analysis highlights a long history of evolution of Aa with its primate hosts and suggests that the acquisition of butyrate metabolism genes may have been a critical step in allowing Aa to colonize a new niche and cause disease in humans. Overall, this study highlights the important role that horizontal gene transfer may play in microbial adaptation and the evolution of infectious disease.


2021 ◽  
Vol 7 (2) ◽  
Author(s):  
George H. Jones

Poly(A) polymerases (PAPs) and tRNA nucleotidyltransferases belong to a superfamily of nucleotidyltransferases and modify RNA 3′-ends. The product of the pcnB gene, PAP I, has been characterized in a few β-, γ- and δ- Proteobacteria . Using the PAP I signature sequence, putative PAPs were identified in bacterial species from the α- and ε- Proteobacteria and from four other bacterial phyla ( Firmicutes , Actinobacteria , Bacteroidetes and Aquificae ). Phylogenetic analysis, alien index and G+C content calculations strongly suggest that the PAPs in the species identified in this study arose by horizontal gene transfer from the β- and γ- Proteobacteria .


2019 ◽  
Vol 201 (9) ◽  
Author(s):  
Samuel J. Magaziner ◽  
Ziyue Zeng ◽  
Bihe Chen ◽  
George P. C. Salmond

ABSTRACTProphage-mediated horizontal gene transfer (HGT) plays a key role in the evolution of bacteria, enabling access to new environmental niches, including pathogenicity.Citrobacter rodentiumis a host-adapted intestinal mouse pathogen and important model organism for attaching and effacing (A/E) pathogens, including the clinically significant enterohaemorrhagic and enteropathogenicEscherichia coli(EHEC and EPEC, respectively). Even thoughC. rodentiumcontains 10 prophage genomic regions, including an active temperate phage, ΦNP, little was known regarding the nature ofC. rodentiumprophages in the bacterium’s evolution toward pathogenicity. In this study, our characterization of ΦNP led to the discovery of a second, fully functional temperate phage, named ΦSM. We identify the bacterial host receptor for both phages as lipopolysaccharide (LPS). ΦNP and ΦSM are likely important mediators of HGT inC. rodentium. Bioinformatic analysis of the 10 prophage regions reveals cargo genes encoding known virulence factors, including several type III secretion system (T3SS) effectors.C. rodentiumprophages are conserved across a wide range of pathogenic enteric bacteria, including EPEC and EHEC as well as pathogenic strains ofSalmonella enterica,Shigella boydii, andKlebsiella pneumoniae. Phylogenetic analysis of core enteric backbone genes compared against prophage evolutionary models suggests that these prophages represent an important, conserved family of horizontally acquired enteric-bacterium-associated pathogenicity determinants. In addition to highlighting the transformative role of bacteriophage-mediated HGT inC. rodentium’s evolution toward pathogenicity, these data suggest that the examination of conserved families of prophages in other pathogenic bacteria and disease outbreaks might provide deeper evolutionary and pathological insights otherwise obscured by more classical analysis.IMPORTANCEBacteriophages are obligate intracellular parasites of bacteria. Some bacteriophages can confer novel bacterial phenotypes, including pathogenicity, through horizontal gene transfer (HGT). The pathogenic bacteriumCitrobacter rodentiuminfects mice using mechanisms similar to those employed by human gastrointestinal pathogens, making it an important model organism. Here, we examined the 10 prophages ofC. rodentium, investigating their roles in its evolution toward virulence. We characterized ΦNP and ΦSM, two endogenous active temperate bacteriophages likely important for HGT. We showed that the 10 prophages encode predicted virulence factors and are conserved within other intestinal pathogens. Phylogenetic analysis suggested that they represent a conserved family of horizontally acquired enteric-bacterium-associated pathogenic determinants. Consequently, similar analysis of prophage elements in other pathogens might further understanding of their evolution and pathology.


2019 ◽  
Vol 8 (9) ◽  
Author(s):  
Fabrício S. Campos ◽  
Fernando B. Cerqueira ◽  
Gil R. Santos ◽  
Eliseu J. G. Pereira ◽  
Roberto F. T. Corrêia ◽  
...  

Plasmids play a crucial role in the evolution of bacterial genomes by mediating horizontal gene transfer. In this work, we sequenced two plasmids found in a Brazilian Bacillus thuringiensis serovar israelensis strain which showed 100% nucleotide identities with Bacillus thuringiensis serovar kurstaki plasmids.


mBio ◽  
2012 ◽  
Vol 3 (5) ◽  
Author(s):  
Peter Jorth ◽  
Marvin Whiteley

ABSTRACTNatural transformation by competent bacteria is a primary means of horizontal gene transfer; however, evidence that competence drives bacterial diversity and evolution has remained elusive. To test this theory, we used a retrospective comparative genomic approach to analyze the evolutionary history ofAggregatibacter actinomycetemcomitans, a bacterial species with both competent and noncompetent sister strains. Through comparative genomic analyses, we reveal that competence is evolutionarily linked to genomic diversity and speciation. Competence loss occurs frequently during evolution and is followed by the loss of clustered regularly interspaced short palindromic repeats (CRISPRs), bacterial adaptive immune systems that protect against parasitic DNA. Relative to noncompetent strains, competent bacteria have larger genomes containing multiple rearrangements. In contrast, noncompetent bacterial genomes are extremely stable but paradoxically susceptible to infective DNA elements, which contribute to noncompetent strain genetic diversity. Moreover, incomplete noncompetent strain CRISPR immune systems are enriched for self-targeting elements, which suggests that the CRISPRs have been co-opted for bacterial gene regulation, similar to eukaryotic microRNAs derived from the antiviral RNA interference pathway.IMPORTANCEThe human microbiome is rich with thousands of diverse bacterial species. One mechanism driving this diversity is horizontal gene transfer by natural transformation, whereby naturally competent bacteria take up environmental DNA and incorporate new genes into their genomes. Competence is theorized to accelerate evolution; however, attempts to test this theory have proved difficult. Through genetic analyses of the human periodontal pathogenAggregatibacter actinomycetemcomitans, we have discovered an evolutionary connection between competence systems promoting gene acquisition and CRISPRs (clustered regularly interspaced short palindromic repeats), adaptive immune systems that protect bacteria against genetic parasites. We show that competentA. actinomycetemcomitansstrains have numerous redundant CRISPR immune systems, while noncompetent bacteria have lost their CRISPR immune systems because of inactivating mutations. Together, the evolutionary data linking the evolution of competence and CRISPRs reveals unique mechanisms promoting genetic heterogeneity and the rise of new bacterial species, providing insight into complex mechanisms underlying bacterial diversity in the human body.


2018 ◽  
Vol 62 (9) ◽  
Author(s):  
Eva Hong ◽  
Ala-Eddine Deghmane ◽  
Muhamed-Kheir Taha

ABSTRACT We report the detection in France of a beta-lactamase-producing invasive meningococcal isolate. Whole-genome sequencing of the isolate revealed a ROB-1-type beta-lactamase gene that is frequently encountered in Haemophilus influenzae, suggesting horizontal transfer between isolates of these bacterial species. Beta-lactamases are exceptional in meningococci, with no reports for more than 2 decades. This report is worrying, as the expansion of such isolates may jeopardize the effective treatment against invasive meningococcal disease.


2018 ◽  
Vol 84 (23) ◽  
Author(s):  
Ximin Zeng ◽  
Zuowei Wu ◽  
Qijing Zhang ◽  
Jun Lin

ABSTRACTConjugation is an important mechanism for horizontal gene transfer inCampylobacter jejuni, the leading cause of human bacterial gastroenteritis in developed countries. However, to date, the factors that significantly influence conjugation efficiency inCampylobacterspp. are still largely unknown. Given that multiple recombinant loci could independently occur within one recipient cell during natural transformation, the genetic materials from a high-frequency conjugation (HFC)C. jejunistrain may be cotransformed with a selection marker into a low-frequency conjugation (LFC) recipient strain, creating new HFC transformants suitable for the identification of conjugation factors using a comparative genomics approach. To test this, an erythromycin resistance selection marker was created in an HFCC. jejunistrain; subsequently, the DNA of this strain was naturally transformed into NCTC 11168, an LFCC. jejunistrain, leading to the isolation of NCTC 11168-derived HFC transformants. Whole-genome sequencing analysis and subsequent site-directed mutagenesis identified Cj1051c, a putative restriction-modification enzyme (akaCjeI) that could drastically reduce the conjugation efficiency of NCTC 11168 (>5,000-fold). Chromosomal complementation of three diverse HFCC. jejunistrains with CjeI also led to a dramatic reduction in conjugation efficiency (∼1,000-fold). The purified recombinant CjeI could effectively digest theEscherichia coli-derived shuttle vector pRY107. The endonuclease activity of CjeI was abolished upon short heat shock treatment at 50°C, which is consistent with our previous observation that heat shock enhanced conjugation efficiency inC. jejuni. Together, in this study, we successfully developed and utilized a unique cotransformation strategy to identify a restriction-modification enzyme that significantly influences conjugation efficiency inC. jejuni.IMPORTANCEConjugation is an important horizontal gene transfer mechanism contributing to the evolution of bacterial pathogenesis and antimicrobial resistance.Campylobacter jejuni, the leading foodborne bacterial organism, displays significant strain diversity due to horizontal gene transfer; however, the molecular components influencing conjugation efficiency inC. jejuniare still largely unknown. In this study, we developed a cotransformation strategy for comparative genomics analysis and successfully identified a restriction-modification enzyme that significantly influences conjugation efficiency inC. jejuni. The new cotransformation strategy developed in this study is also expected to be broadly applied in other naturally competent bacteria for functional comparative genomics research.


2012 ◽  
Vol 194 (23) ◽  
pp. 6642-6643 ◽  
Author(s):  
Isabel Brunet-Galmés ◽  
Antonio Busquets ◽  
Arantxa Peña ◽  
Margarita Gomila ◽  
Balbina Nogales ◽  
...  

ABSTRACTPseudomonas stutzeriAN10 (CCUG 29243) can be considered a model strain for aerobic naphthalene degradation. We report the complete genome sequence of this bacterium. Its 4.71-Mb chromosome provides insights into other biodegradative capabilities of strain AN10 (i.e., benzoate catabolism) and suggests a high number of horizontal gene transfer events.


mBio ◽  
2014 ◽  
Vol 5 (2) ◽  
Author(s):  
Volker Winstel ◽  
Patricia Sanchez-Carballo ◽  
Otto Holst ◽  
Guoqing Xia ◽  
Andreas Peschel

ABSTRACT The major clonal lineages of the human pathogen Staphylococcus aureus produce cell wall-anchored anionic poly-ribitol-phosphate (RboP) wall teichoic acids (WTA) substituted with d-Alanine and N-acetyl-d-glucosamine. The phylogenetically isolated S. aureus ST395 lineage has recently been found to produce a unique poly-glycerol-phosphate (GroP) WTA glycosylated with N-acetyl-d-galactosamine (GalNAc). ST395 clones bear putative WTA biosynthesis genes on a novel genetic element probably acquired from coagulase-negative staphylococci (CoNS). We elucidated the ST395 WTA biosynthesis pathway and identified three novel WTA biosynthetic genes, including those encoding an α-O-GalNAc transferase TagN, a nucleotide sugar epimerase TagV probably required for generation of the activated sugar donor substrate for TagN, and an unusually short GroP WTA polymerase TagF. By using a panel of mutants derived from ST395, the GalNAc residues carried by GroP WTA were found to be required for infection by the ST395-specific bacteriophage Φ187 and to play a crucial role in horizontal gene transfer of S. aureus pathogenicity islands (SaPIs). Notably, ectopic expression of ST395 WTA biosynthesis genes rendered normal S. aureus susceptible to Φ187 and enabled Φ187-mediated SaPI transfer from ST395 to regular S. aureus. We provide evidence that exchange of WTA genes and their combination in variable, mosaic-like gene clusters have shaped the evolution of staphylococci and their capacities to undergo horizontal gene transfer events. IMPORTANCE The structural highly diverse wall teichoic acids (WTA) are cell wall-anchored glycopolymers produced by most Gram-positive bacteria. While most of the dominant Staphylococcus aureus lineages produce poly-ribitol-phosphate WTA, the recently described ST395 lineage produces a distinct poly-glycerol-phosphate WTA type resembling the WTA backbone of coagulase-negative staphylococci (CoNS). Here, we analyzed the ST395 WTA biosynthesis pathway and found new types of WTA biosynthesis genes along with an evolutionary link between ST395 and CoNS, from which the ST395 WTA genes probably originate. The elucidation of ST395 WTA biosynthesis will help to understand how Gram-positive bacteria produce highly variable WTA types and elucidate functional consequences of WTA variation.


2018 ◽  
Vol 84 (11) ◽  
Author(s):  
Alexander B. Westbye ◽  
Lukas Kater ◽  
Christina Wiesmann ◽  
Hao Ding ◽  
Calvin K. Yip ◽  
...  

ABSTRACTSeveral members of theRhodobacterales(Alphaproteobacteria) produce a conserved horizontal gene transfer vector, called the gene transfer agent (GTA), that appears to have evolved from a bacteriophage. The model system used to study GTA biology is theRhodobacter capsulatusGTA (RcGTA), a small, tailed bacteriophage-like particle produced by a subset of the cells in a culture. The response regulator CtrA is conserved in theAlphaproteobacteriaand is an essential regulator of RcGTA production: it controls the production and maturation of the RcGTA particle and RcGTA release from cells. CtrA also controls the natural transformation-like system required for cells to receive RcGTA-donated DNA. Here, we report that dysregulation of the CckA-ChpT-CtrA phosphorelay either by the loss of the PAS domain protein DivL or by substitution of the autophosphorylation residue of the hybrid histidine kinase CckA decreased CtrA phosphorylation and greatly increased RcGTA protein production inR. capsulatus. We show that the loss of the ClpXP protease or the three C-terminal residues of CtrA results in increased CtrA levels inR. capsulatusand identify ClpX(P) to be essential for the maturation of RcGTA particles. Furthermore, we show that CtrA phosphorylation is important for head spike production. Our results provide novel insight into the regulation of CtrA and GTAs in theRhodobacterales.IMPORTANCEMembers of theRhodobacteralesare abundant in ocean and freshwater environments. The conserved GTA produced by manyRhodobacteralesmay have an important role in horizontal gene transfer (HGT) in aquatic environments and provide a significant contribution to their adaptation. GTA production is controlled by bacterial regulatory systems, including the conserved CckA-ChpT-CtrA phosphorelay; however, several questions about GTA regulation remain. Our identification that a short DivL homologue and ClpXP regulate CtrA inR. capsulatusextends the model of CtrA regulation fromCaulobacter crescentusto a member of theRhodobacterales. We found that the magnitude of RcGTA production greatly depends on DivL and CckA kinase activity, adding yet another layer of regulatory complexity to RcGTA. RcGTA is known to undergo CckA-dependent maturation, and we extend the understanding of this process by showing that the ClpX chaperone is required for formation of tailed, DNA-containing particles.


Sign in / Sign up

Export Citation Format

Share Document