Headless henipaviral receptor binding glycoproteins reveal key post-receptor binding contributions of the globular head and head/stalk interface in fusion promotion

2021 ◽  
Author(s):  
Yao Yu Yeo ◽  
David W. Buchholz ◽  
Amandine Gamble ◽  
Mason Jager ◽  
Hector C. Aguilar

Cedar virus (CedV) is a nonpathogenic member of the Henipavirus (HNV) genus of emerging viruses, which includes the deadly Nipah (NiV) and Hendra (HeV) viruses. CedV forms syncytia, a hallmark of henipaviral and paramyxoviral infections and pathogenicity. However, the intrinsic fusogenic capacity of CedV relative to NiV or HeV remains unquantified. HNV entry is mediated by concerted interactions between the attachment (G) and fusion (F) glycoproteins. Upon receptor binding by the HNV G head domain, a fusion-activating G stalk region is exposed and triggers F to undergo a conformational cascade that leads to viral entry or cell-cell fusion. Here, we first demonstrated quantitatively that CedV is inherently significantly less fusogenic than NiV at equivalent G and F cell surface expression levels. We then generated and tested six headless CedV G mutants of distinct stalk C-terminal lengths, surprisingly revealing highly hyperfusogenic cell-cell fusion phenotypes 3 to 4-fold greater than wild-type CedV levels. Additionally, similarly to NiV, a headless HeV G mutant yielded a less pronounced hyperfusogenic phenotype compared to wild-type HeV. Further, coimmunoprecipitation and cell-cell fusion assays revealed heterotypic NiV/CedV functional G/F bidentate interactions, as well as evidence of HNV G head domain involvement beyond receptor binding or G stalk exposure. All evidence points to the G head/stalk junction being key to modulating HNV fusogenicity, supporting the notion that head domains play several distinct and central roles in modulating stalk domain fusion promotion. Further, this study exemplifies how CedV may help elucidate important mechanistic underpinnings of HNV entry and pathogenicity. IMPORTANCE The Henipavirus genus in the Paramyxoviridae family includes the zoonotic Nipah (NiV) and Hendra (HeV) viruses. NiV and HeV infections often cause fatal encephalitis and pneumonia, but no vaccines or therapeutics are currently approved for human use. Upon viral entry, Henipavirus infections yield the formation of multinucleated cells (syncytia). Viral entry and cell-cell fusion are mediated by the attachment (G) and fusion (F) glycoproteins. Cedar virus (CedV), a nonpathogenic henipavirus, may be a useful tool to gain knowledge on henipaviral pathogenicity. Here, using homotypic and heterotypic full-length and headless CedV, NiV, and HeV G/F combinations, we discovered that CedV G/F are significantly less fusogenic than NiV or HeV G/F, and that the G head/stalk junction is key to modulating cell-cell fusion, refining the mechanism of henipaviral membrane fusion events. Our study exemplifies how CedV may be a useful tool to elucidate broader mechanistic understanding for the important henipaviruses.

2004 ◽  
Vol 78 (15) ◽  
pp. 8015-8025 ◽  
Author(s):  
Elisa Avitabile ◽  
Giulia Lombardi ◽  
Tatiana Gianni ◽  
Miriam Capri ◽  
Gabriella Campadelli-Fiume

ABSTRACT Syncytium formation in cells that express herpes simplex virus glycoprotein B (gB), gD, gH, and gL is blocked by gK (E. Avitabile, G. Lombardi, and G. Campadelli-Fiume, J. Virol. 77:6836-6844, 2003). Here, we report the results of two series of experiments. First, UL20 protein (UL20p) expression weakly inhibited cell-cell fusion. Coexpression of UL20p and gK drastically reduced fusion in a cell-line-dependent manner, with the highest inhibition in BHK cells. Singly expressed UL20p and gK localized at the endoplasmic reticulum and nuclear membranes. When they were coexpressed, both proteins relocalized to the Golgi apparatus. Remarkably, in cells that coexpressed UL20p and gK, the antifusion activity correlated with a downmodulation of gD, gB, gH, and gL cell surface expression. Second, gBΔ867 has a partial deletion in the cytoplasmic tail that removed endocytosis motifs. Whereas wild-type (wt) gB was internalized in vesicles lined with the endosomal marker Rab5, gBΔ867 was not internalized, exhibited enhanced cell surface expression, and was more efficient in mediating cell-cell fusion than wt gB. The antifusion activity of UL20p and gK was also exerted when gBΔ867 replaced wt gB in the cell fusion assay. These studies show that the gB C tail carries a functional endocytosis motif(s) and that the removal of the motif correlated with increased gB surface expression and increased fusion activity. We conclude that cell-cell fusion in wt-virus-infected cells is negatively controlled by at least two mechanisms. The novel mechanism described here involves the concerted action of UL20p and gK and correlates with a moderate but consistent reduction in the cell surface expression of the fusion glycoproteins. This mechanism is independent of the one exerted through endocytosis-mediated downmodulation of gB from the plasma membrane.


2018 ◽  
Vol 92 (24) ◽  
Author(s):  
Doina Atanasiu ◽  
Wan Ting Saw ◽  
Eric Lazear ◽  
J. Charles Whitbeck ◽  
Tina M. Cairns ◽  
...  

ABSTRACTHSV virus-cell and cell-cell fusion requires multiple interactions between four essential virion envelope glycoproteins, gD, gB, gH, and gL, and between gD and a cellular receptor, nectin-1 or herpesvirus entry mediator (HVEM). Current models suggest that binding of gD to receptors induces a conformational change that leads to activation of gH/gL and consequent triggering of the prefusion form of gB to promote membrane fusion. Since protein-protein interactions guide each step of fusion, identifying the sites of interaction may lead to the identification of potential therapeutic targets that block this process. We have previously identified two “faces” on gD: one for receptor binding and the other for its presumed interaction with gH/gL. We previously separated the gD monoclonal antibodies (MAbs) into five competition communities. MAbs from two communities (MC2 and MC5) neutralize virus infection and block cell-cell fusion but do not block receptor binding, suggesting that they block binding of gD to gH/gL. Using a combination of classical epitope mapping of gD mutants with fusion and entry assays, we identified two residues (R67 and P54) on the presumed gH/gL interaction face of gD that allowed for fusion and viral entry but were no longer sensitive to inhibition by MC2 or MC5, yet both were blocked by other MAbs. As neutralizing antibodies interfere with essential steps in the fusion pathway, our studies strongly suggest that these key residues block the interaction of gD with gH/gL.IMPORTANCEVirus entry and cell-cell fusion mediated by HSV require gD, gH/gL, gB, and a gD receptor. Neutralizing antibodies directed against any of these proteins bind to residues within key functional sites and interfere with an essential step in the fusion pathway. Thus, the epitopes of these MAbs identify critical, functional sites on their target proteins. Unlike many anti-gD MAbs, which block binding of gD to a cellular receptor, two, MC2 and MC5, block a separate, downstream step in the fusion pathway which is presumed to be the activation of the modulator of fusion, gH/gL. By combining epitope mapping of a panel of gD mutants with fusion and virus entry assays, we have identified residues that are critical in the binding and function of these two MAbs. This new information helps to define the site of the presumptive interaction of gD with gH/gL, of which we have limited knowledge.


2007 ◽  
Vol 81 (9) ◽  
pp. 4520-4532 ◽  
Author(s):  
Hector C. Aguilar ◽  
Kenneth A. Matreyek ◽  
Daniel Y. Choi ◽  
Claire Marie Filone ◽  
Sophia Young ◽  
...  

ABSTRACT The cytoplasmic tails of the envelope proteins from multiple viruses are known to contain determinants that affect their fusogenic capacities. Here we report that specific residues in the cytoplasmic tail of the Nipah virus fusion protein (NiV-F) modulate its fusogenic activity. Truncation of the cytoplasmic tail of NiV-F greatly inhibited cell-cell fusion. Deletion and alanine scan analysis identified a tribasic KKR motif in the membrane-adjacent region as important for modulating cell-cell fusion. The K1A mutation increased fusion 5.5-fold, while the K2A and R3A mutations decreased fusion 3- to 5-fold. These results were corroborated in a reverse-pseudotyped viral entry assay, where receptor-pseudotyped reporter virus was used to infect cells expressing wild-type or mutant NiV envelope glycoproteins. Differential monoclonal antibody binding data indicated that hyper- or hypofusogenic mutations in the KKR motif affected the ectodomain conformation of NiV-F, which in turn resulted in faster or slower six-helix bundle formation, respectively. However, we also present evidence that the hypofusogenic phenotypes of the K2A and R3A mutants were effected via distinct mechanisms. Interestingly, the K2A mutant was also markedly excluded from lipid rafts, where ∼20% of wild-type F and the other mutants can be found. Finally, we found a strong negative correlation between the relative fusogenic capacities of these cytoplasmic-tail mutants and the avidities of NiV-F and NiV-G interactions (P = 0.007, r 2 = 0.82). In toto, our data suggest that inside-out signaling by specific residues in the cytoplasmic tail of NiV-F can modulate its fusogenicity by multiple distinct mechanisms.


2014 ◽  
Vol 89 (3) ◽  
pp. 1838-1850 ◽  
Author(s):  
Qian Liu ◽  
Birgit Bradel-Tretheway ◽  
Abrrey I. Monreal ◽  
Jonel P. Saludes ◽  
Xiaonan Lu ◽  
...  

ABSTRACTMembrane fusion is essential for paramyxovirus entry into target cells and for the cell-cell fusion (syncytia) that results from many paramyxoviral infections. The concerted efforts of two membrane-integral viral proteins, the attachment (HN, H, or G) and fusion (F) glycoproteins, mediate membrane fusion. The emergent Nipah virus (NiV) is a highly pathogenic and deadly zoonotic paramyxovirus. We recently reported that upon cell receptor ephrinB2 or ephrinB3 binding, at least two conformational changes occur in the NiV-G head, followed by one in the NiV-G stalk, that subsequently result in F triggering and F execution of membrane fusion. However, the domains and residues in NiV-G that trigger F and the specific events that link receptor binding to F triggering are unknown. In the present study, we identified a NiV-G stalk C-terminal region (amino acids 159 to 163) that is important for multiple G functions, including G tetramerization, conformational integrity, G-F interactions, receptor-induced conformational changes in G, and F triggering. On the basis of these results, we propose that this NiV-G region serves as an important structural and functional linker between the NiV-G head and the rest of the stalk and is critical in propagating the F-triggering signal via specific conformational changes that open a concealed F-triggering domain(s) in the G stalk. These findings broaden our understanding of the mechanism(s) of receptor-induced paramyxovirus F triggering during viral entry and cell-cell fusion.IMPORTANCEThe emergent deadly viruses Nipah virus (NiV) and Hendra virus belong to theHenipavirusgenus in theParamyxoviridaefamily. NiV infections target endothelial cells and neurons and, in humans, result in 40 to 75% mortality rates. The broad tropism of the henipaviruses and the unavailability of therapeutics threaten the health of humans and livestock. Viral entry into host cells is the first step of henipavirus infections, which ultimately cause syncytium formation. After attaching to the host cell receptor, henipaviruses enter the target cell via direct viral-cell membrane fusion mediated by two membrane glycoproteins: the attachment protein (G) and the fusion protein (F). In this study, we identified and characterized a region in the NiV-G stalk C-terminal domain that links receptor binding to fusion triggering via several important glycoprotein functions. These findings advance our understanding of the membrane fusion-triggering mechanism(s) of the henipaviruses and the paramyxoviruses.


Viruses ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 229 ◽  
Author(s):  
María García-Murria ◽  
Neus Expósito-Domínguez ◽  
Gerard Duart ◽  
Ismael Mingarro ◽  
Luis Martinez-Gil

Fusion of viral and cellular membranes is a key step during the viral life cycle. Enveloped viruses trigger this process by means of specialized viral proteins expressed on their surface, the so-called viral fusion proteins. There are multiple assays to analyze the viral entry including those that focus on the cell-cell fusion induced by some viral proteins. These methods often rely on the identification of multinucleated cells (syncytium) as a result of cell membrane fusions. In this manuscript, we describe a novel methodology for the study of cell-cell fusion. Our approach, named Bimolecular Multicellular Complementation (BiMuC), provides an adjustable platform to qualitatively and quantitatively investigate the formation of a syncytium. Furthermore, we demonstrated that our procedure meets the requirements of a drug discovery approach and performed a proof of concept small molecule high-throughput screening to identify compounds that could block the entry of the emerging Nipah virus.


2021 ◽  
Author(s):  
J. Lizbeth Reyes Zamora ◽  
Victoria Ortega ◽  
Gunner P. Johnston ◽  
Jenny Li ◽  
Hector C. Aguilar

Nipah virus (NiV) is a zoonotic bat henipavirus in the family Paramyxoviridae. NiV is deadly to humans, infecting host cells by direct fusion of the viral and host-cell plasma membranes. This membrane fusion process is coordinated by the receptor-binding attachment (G) and fusion (F) glycoproteins. Upon G-receptor binding, F fuses membranes via a cascade that sequentially involves F-triggering, fusion-pore formation, and viral or genome entry into cells. Using NiV as an important paramyxoviral model, we identified two novel regions in F that modulate the membrane fusion cascade. For paramyxoviruses and other viral families with class I fusion proteins, the HR1 and HR2 regions in the fusion protein pre-fusion conformation bind to form a six-helix bundle in the post-fusion conformation. Here, structural comparisons between the F pre-fusion and post-fusion conformations revealed that a short loop region (N1) undergoes dramatic spatial reorganization, and a short alpha helix (N4) undergoes secondary structural changes. The roles of the N1 and N4 regions during the membrane fusion cascade, however, remain unknown for henipaviruses and paramyxoviruses. By performing alanine scan mutagenesis and various functional analyses, we report that specific residues within these regions alter various steps in the membrane fusion cascade. While the N1 region affects early F-triggering, the N4 region affects F-triggering, F thermostability, and extensive fusion-pore expansion during syncytia formation, also uncovering a link between F/G interactions and F-triggering. These novel mechanistic roles expand our understanding of henipaviral and paramyxoviral F triggering, viral entry, and cell-cell fusion (syncytia), a pathognomonic feature of paramyxoviral infections. IMPORTANCE Henipaviruses infect bats, agriculturally important animals, and humans, with high mortality rates approaching ∼75% in humans. Known human outbreaks have concentrated in southeast Asia and Australia. Further, about 20 new henipaviral species have been recently discovered in bats, with geographical spans in Asia, Africa and South America. The development of antiviral therapeutics requires a thorough understanding of the mechanism of viral entry into host cells. In this study, we discovered novel roles of two regions within the fusion protein of the deadly henipavirus NiV. Such roles were in allowing viral entry into host cells and cell-cell fusion, a pathological hallmark of this and other paramyxoviruses. These novel roles were in the previously undescribed N1 and N4 regions within the fusion protein, modulating early and late steps of these important process of viral infection and henipaviral disease. Notably, this knowledge may apply to other henipaviruses and more broadly to other paramyxoviruses.


2004 ◽  
Vol 78 (6) ◽  
pp. 2884-2896 ◽  
Author(s):  
Tracy Jo Pasieka ◽  
Lucie Maresova ◽  
Kimiyasu Shiraki ◽  
Charles Grose

ABSTRACT The gH glycoprotein of varicella-zoster virus (VZV) is a major fusogen. The realigned short cytoplasmic tail of gH (18 amino acids) harbors a functional endocytosis motif (YNKI) that mediates internalization in both VZV-infected and transfected cells (T. J. Pasieka, L. Maresova, and C. Grose, J. Virol. 77: 4194-4202, 2003). During subsequent confocal microscopy studies of endocytosis-deficient gH mutants, we observed that cells transfected with the gH tail mutants exhibited marked fusion. Therefore, we postulated that VZV gH endocytosis served to regulate cell-to-cell fusion. Subsequent analyses of gH+gL transfection fusion assays by the Kolmogorov-Smirnov statistical test demonstrated that expression of the endocytosis-deficient gH mutants resulted in a statistically significant enhancement of cell-to-cell fusion (P < 0.0001) compared to wild-type gH. On the other hand, coexpression of VZV gE, another endocytosis-competent VZV glycoprotein, was able to temper the fusogenicity of the gH endocytosis mutants by facilitating internalization of the mutant gH protein from the cell surface. When the latter results were similarly analyzed, there was no longer any enhanced fusion by the endocytosis-deficient gH mutant protein. In summary, these studies support a role for gH endocytosis in regulating the cell surface expression of gH and thereby regulating gH-mediated fusion. The data also confirm and extend prior observations of a gE-gH interaction during viral glycoprotein trafficking in a VZV transfection system.


2006 ◽  
Vol 80 (7) ◽  
pp. 3225-3237 ◽  
Author(s):  
Woan-Eng Chan ◽  
Chin-Kai Chuang ◽  
Shiou-Hwei Yeh ◽  
Mau-Sun Chang ◽  
Steve S.-L. Chen

ABSTRACT To understand the roles of heptad repeat 1(HR1) and HR2 of the spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) in virus-cell interactions, the conserved Leu or Ile residues located at positions 913, 927, 941, and 955 in HR1 and 1151, 1165, and 1179 in HR2 were individually replaced with an α-helix-breaker Pro residue. The 913P mutant was expressed mainly as a faster-migrating, lower-molecular-weight SL form, while the wild type and all other mutants produced similar levels of both the SL form and the slower-migrating, higher-molecular-weight SH form. The wild-type SL form was processed to the SH form, whereas the SL form of the 913P mutant was inefficiently converted to the SH form after biosynthesis. None of these mutations affected cell surface expression or binding to its cognate ACE2 receptor. In a human immunodeficiency virus type 1/SARS S coexpression study, all mutants except the 913P mutant incorporated the SH form into the virions as effectively as did the wild-type SH form. The mutation at Ile-1151 did not affect membrane fusion or viral entry. The impaired viral entry of the 927P, 941P, 955P, and 1165P mutants was due to their inability to mediate membrane fusion, whereas the defect in viral entry of the 1179P mutant occurred not at the stage of membrane fusion but rather at a postfusion stage. Our study demonstrates the functional importance of HR1 and HR2 of the SARS-CoV spike protein in membrane fusion and viral entry.


2007 ◽  
Vol 82 (2) ◽  
pp. 700-709 ◽  
Author(s):  
Eric Lazear ◽  
Andrea Carfi ◽  
J. Charles Whitbeck ◽  
Tina M. Cairns ◽  
Claude Krummenacher ◽  
...  

ABSTRACT Glycoprotein D (gD) is the receptor binding protein of herpes simplex virus (HSV) and binds to at least two distinct protein receptors, herpesvirus entry mediator (HVEM) and nectin-1. While both receptor binding regions are found within the first 234 amino acids, a crystal structure shows that the C terminus of the gD ectodomain normally occludes the receptor binding sites. Receptor binding must therefore displace the C terminus, and this conformational change is postulated to be required for inducing fusion via gB and gH/gL. When cysteine residues are introduced at positions 37 and 302 of gD, a disulfide bond is formed that stabilizes the C terminus and prevents binding to either receptor. We speculated that if disulfide bonds were engineered further upstream, receptor binding might be separated from the induction of fusion. To test this, we made five additional double cysteine mutants, each potentially introducing a disulfide bond between the ectodomain C terminus and the core of the gD ectodomain. The two mutants predicted to impose the greatest constraint were unable to bind receptors or mediate cell-cell fusion. However, the three mutants with the most flexible C terminus bound well to both HVEM and nectin-1. Two of these mutants were impaired in cell-cell fusion and null-virus complementation. Importantly, a third mutant in this group was nonfunctional in both assays. This mutant clearly separates the role of gD in triggering fusion from its role in receptor binding. Based upon the properties of the panel of mutants we conclude that fusion requires greater flexibility of the gD ectodomain C terminus than does receptor binding.


2013 ◽  
Vol 59 (9) ◽  
pp. 641-644 ◽  
Author(s):  
Guijie Ren ◽  
Yunlong Zhuang ◽  
Keli Tian ◽  
Huiyu Li ◽  
Xueqin Diao ◽  
...  

To explore the effects of amino acids Gln and Asn within the specific fusion domain of fusion (F) protein on the specific membrane fusion in Newcastle disease virus (NDV), the mutants Q204E–Q205E and N245D were constructed in the specific fusion domain of F protein. The mutant genes were co-expressed with homologous or heterologous hemagglutinin–neuraminidase (HN) in BHK21 cells. Cell fusion functions of mutants were analyzed with Giemsa staining and reporter gene methods. Cell surface expression efficiency was analyzed with immunofluorescence assay and fluorescence-activated cell sorter analysis. Co-immunoprecipitation was performed to analyze the interaction of mutant F proteins with the homotypic HN protein. Both Q204E–Q205E and N245D mutations caused increased cell–cell fusion activity when they were co-expressed with homotypic HN protein. The mutant F proteins had slight changes in cell surface expression compared with that of wild-type F protein. The interactions of Q204E–Q205E or N245D with their homotypic HN increased significantly (P < 0.01) compared with the wild-type F protein. Neither Q204–Q205E nor N245D caused cell fusion in the presence of heterologous HN protein. Our data suggested that the residues Q204, Q205, and N245 play a critical role in the regulation of cell fusion. They may decrease the interaction of wild-type NDV F and NDV HN to suppress the fusion activity for survival of the infected host, which may enable a persistent virus infection and long-term virus reproduction and spread.


Sign in / Sign up

Export Citation Format

Share Document