scholarly journals The Adenovirus E4orf4 Protein Induces G2/M Arrest and Cell Death by Blocking Protein Phosphatase 2A Activity Regulated by the B55 Subunit

2009 ◽  
Vol 83 (17) ◽  
pp. 8340-8352 ◽  
Author(s):  
Suiyang Li ◽  
Claudine Brignole ◽  
Richard Marcellus ◽  
Sara Thirlwell ◽  
Olivier Binda ◽  
...  

ABSTRACT Human adenovirus E4orf4 protein is toxic in human tumor cells. Its interaction with the Bα subunit of protein phosphatase 2A (PP2A) is critical for cell killing; however, the effect of E4orf4 binding is not known. Bα is one of several mammalian B-type regulatory subunits that form PP2A holoenzymes with A and C subunits. Here we show that E4orf4 protein interacts uniquely with B55 family subunits and that cell killing increases with the level of E4orf4 expression. Evidence suggesting that Bα-specific PP2A activity, measured in vitro against phosphoprotein substrates, is reduced by E4orf4 binding was obtained, and two potential B55-specific PP2A substrates, 4E-BP1 and p70S6K, were seen to be hypophosphorylated in vivo following expression of E4orf4. Furthermore, treatment of cells with low levels of the phosphatase inhibitor okadaic acid or coexpression of the PP2A inhibitor I1 PP2A enhanced E4orf4-induced cell killing and G2/M arrest significantly. These results suggested that E4orf4 toxicity results from the inhibition of B55-specific PP2A holoenzymes, an idea that was strengthened by an observed growth arrest resulting from treatment of H1299 cells with Bα-specific RNA interference. We believe that E4orf4 induces growth arrest resulting in cell death by reducing the global level of B55-specific PP2A activity, thus preventing the dephosphorylation of B55-specific PP2A substrates, including those involved in cell cycle progression.

2002 ◽  
Vol 22 (11) ◽  
pp. 3674-3684 ◽  
Author(s):  
Xinghai Li ◽  
Anne Scuderi ◽  
Anthea Letsou ◽  
David M. Virshup

ABSTRACT Protein phosphorylation and specific protein kinases can initiate signal transduction pathways leading to programmed cell death. The specific protein phosphatases regulating apoptosis have been more elusive. Using double-stranded RNA-mediated interference (RNAi), the role of protein phosphatase 2A (PP2A) in cellular signaling was investigated. Knockdown of A or C subunits individually or of combined B subunits led to concurrent loss of nontargeted PP2A subunits, suggesting that PP2A is an obligate heterotrimer in vivo. Global knockdown of PP2A activity or specific loss of redundant B56 regulatory subunits caused cell death with the morphological and biochemical changes characteristic of apoptosis in cultured S2 cells. B56:PP2A-regulated apoptosis required caspases and the upstream regulators dark, reaper, head involution defective, and dp53. In Drosophila embryos, knockdown of B56-regulated PP2A activity resulted in apoptosis and failure of gastrulation, an effect that was blocked by concurrent RNAi of the caspase Drice. B56-regulated PP2A activity appears to be required upstream of dp53 to maintain a critical proapoptotic substrate in a dephosphorylated, inactive state, thereby preventing apoptosis in Drosophila S2 cells.


2000 ◽  
Vol 20 (21) ◽  
pp. 8143-8156 ◽  
Author(s):  
Haifeng Yang ◽  
Wei Jiang ◽  
Matthew Gentry ◽  
Richard L. Hallberg

ABSTRACT CDC55 encodes a Saccharomyces cerevisiaeprotein phosphatase 2A (PP2A) regulatory subunit.cdc55-null cells growing at low temperature exhibit a failure of cytokinesis and produce abnormally elongated buds, butcdc55-null cells producing the cyclin-dependent kinase Cdc28-Y19F, which is unable to be inhibited by Y19 phosphorylation, show a loss of the abnormal morphology. Furthermore,cdc55-null cells exhibit a hyperphosphorylation of Y19. For these reasons, we have examined in wild-type and cdc55-null cells the levels and activities of the kinase (Swe1p) and phosphatase (Mih1p) that normally regulate the extent of Cdc28 Y19 phosphorylation. We find that Mih1p levels are comparable in the two strains, and an estimate of the in vivo and in vitro phosphatase activity of this enzyme in the two cell types indicates no marked differences. By contrast, while Swe1p levels are similar in unsynchronized and S-phase-arrested wild-type and cdc55-null cells, Swe1 kinase is found at elevated levels in mitosis-arrestedcdc55-null cells. This excess Swe1p incdc55-null cells is the result of ectopic stabilization of this protein during G2 and M, thereby accounting for the accumulation of Swe1p in mitosis-arrested cells. We also present evidence indicating that, in cdc55-null cells, misregulated PP2A phosphatase activity is the cause of both the ectopic stabilization of Swe1p and the production of the morphologically abnormal phenotype.


2006 ◽  
Vol 26 (11) ◽  
pp. 4017-4027 ◽  
Author(s):  
Ana M. Gil-Bernabé ◽  
Francisco Romero ◽  
M. Cristina Limón-Mortés ◽  
María Tortolero

ABSTRACT Sister chromatid segregation is triggered at the metaphase-to-anaphase transition by the activation of the protease separase. For most of the cell cycle, separase activity is kept in check by its association with the inhibitory chaperone securin. Activation of separase occurs at anaphase onset, when securin is targeted for destruction by the anaphase-promoting complex or cyclosome E3 ubiquitin protein ligase. This results in the release of the cohesins from chromosomes, which in turn allows the segregation of sister chromatids to opposite spindle poles. Here we show that human securin (hSecurin) forms a complex with enzymatically active protein phosphatase 2A (PP2A) and that it is a substrate of the phosphatase, both in vitro and in vivo. Treatment of cells with okadaic acid, a potent inhibitor of PP2A, results in various hyperphosphorylated forms of hSecurin which are extremely unstable, due to the action of the Skp1/Cul1/F-box protein complex ubiquitin ligase. We propose that PP2A regulates hSecurin levels by counteracting its phosphorylation, which promotes its degradation. Misregulation of this process may lead to the formation of tumors, in which overproduction of hSecurin is often observed.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Neelakantan T Vasudevan ◽  
Anita Shukla ◽  
Sathyamangla V Naga Prasad

Resensitization of β-adrenergic receptor (βAR) occurs by dephosphorylation of the internalized βAR by protein phosphatase 2A (PP2A) before being recycled back to plasma membrane (PM). Contrary to this classical paradigm, cardiac specific expression of inactive PI3Kγ (PI3Kγ inact ) leads to receptor resensitization at the plasma membrane as measured by adenylyl cyclase activity in mice chronically treated with the agonist. We hypothesized that PI3K activity inhibits PM receptor resensitization. Using cells stably expressing FLAG-β 1 AR alone (single) or along with PI3Kγ inact (double), we show that inhibition of PI3K activity results in novel PM receptor resensitization. Agonist activation of single stables showed significant receptor desensitization as measured by reduced cAMP generation (35.6 ± 4.6 pmol/mg protein). In contrast, double-or wortmannin (Wort, PI3K inhibitor) pre-treated single- stables showed marked generation of cAMP (87.4 ± 3.2 or 83.1 ± 5.7) showing β 1 AR resensitization. Agonist stimulation of metabolically labeled β 1 ARs pre-treated with inhibitors of internalization, sucrose and β-cyclodextrin resulted in accumulation of phosphorylated receptors at the PM, which was abolished with PI3Kγ inact suggesting dephosphorylation of β 1 ARs. Inhibition of PP2A by okadaic acid or Fostriecin resulted in complete loss of β 1 AR resensitization despite the presence of PI3Kγ inact showing that PI3K regulates PP2A activity at the β 1 AR complex. Pre-treatment of single stable cells with Wort resulted in significant increase in β 1 AR-associated phosphatase activity following dobutamine (Dob) treatment (Veh, 4131 ± 14; Dob, 3180 ± 111; Dob + Wort, 17123 ± 680 pmoles/mg protein). Consistently, similar results were obtained in vivo using single transgenic (FLAG-β 1 AR, Veh, 87 ± 12; Dob, 61.7 ± 8.3) and double transgenic (FLAG-β 1 AR and PI3Kγ inact , Veh, 93 ± 9; Dob, 118 ± 6) mice. In vivo metabolic labeling, co-immunoprecipitation and in vitro kinase assays showed that inhibitor of PP2A (I2PP2A) protein as a target of PI3K in regulating PP2A activity at the β 1 AR complex. Indeed, siRNA knock down of I2PP2A results in preservation of β 1 AR function by PM receptor resensitization demonstrating a novel role for PI3K in receptor resensitization. This research has received full or partial funding support from the American Heart Association, AHA Great Rivers Affiliate (Delaware, Kentucky, Ohio, Pennsylvania & West Virginia).


1993 ◽  
Vol 106 (1) ◽  
pp. 219-226 ◽  
Author(s):  
E. Kam ◽  
K.A. Resing ◽  
S.K. Lim ◽  
B.A. Dale

The aggregation of cellular intermediate filaments is an important step in the terminal differentiation of keratinocytes. It has been shown that epidermal filaggrin can cause intermediate filaments to aggregate in vitro and may also have the same function in vivo. Filaggrin is derived via dephosphorylation and proteolysis from a highly phosphorylated precursor, profilaggrin, which is found in the granular layer of the epidermis. Using casein kinase II phosphorylated filaggrin as substrate, a profilaggrin phosphatase has been partially purified from rat epidermal homogenate by three chromatographic steps (DE52, hydroxylapatite and S200 gel filtration). Profilaggrin phosphatase activity eluted from the last column has a Km of 0.12 mM and a Vmax of 8 nmol/mg/min with respect to phosphofilaggrin. Results obtained by initial rate analysis showed that the enzymatic activity is not affected by phospho-tyrosyl phosphatase inhibitors and the active fractions preferentially dephosphorylate the alpha subunit of phosphorylase kinase which has been phosphorylated by cAMP-dependent kinase. These results suggest that epidermal profilaggrin phosphatase is not a phospho-tyrosyl phosphatase or a type 1 phospho-seryl/phospho-threonyl phosphatase. Dephosphorylation is not affected by EDTA, calcium or magnesium, but is very sensitive to okadaic acid inhibition (IC50 = 80 pM), suggesting that the enzymatic activity is related to that of the protein phosphatase 2A (PP2A).(ABSTRACT TRUNCATED AT 250 WORDS)


1993 ◽  
Vol 13 (3) ◽  
pp. 1657-1665 ◽  
Author(s):  
C L Carpenter ◽  
K R Auger ◽  
B C Duckworth ◽  
W M Hou ◽  
B Schaffhausen ◽  
...  

We identified a serine/threonine protein kinase that is associated with and phosphorylates phosphoinositide 3-kinase (PtdIns 3-kinase). The serine kinase phosphorylates both the 85- and 110-kDa subunits of PtdIns 3-kinase and purifies with it from rat liver and immunoprecipitates with antibodies raised to the 85-kDa subunit. Tryptic phosphopeptide maps indicate that p85 from polyomavirus middle T-transformed cells is phosphorylated in vivo at three sites phosphorylated in vitro by the associated serine kinase. The 85-kDa subunit of PtdIns 3-kinase is phosphorylated in vitro on serine at a stoichiometry of approximately 1 mol of phosphate per mol of p85. This phosphorylation results in a three- to sevenfold decrease in PtdIns 3-kinase activity. Dephosphorylation with protein phosphatase 2A reverses the inhibition. This suggests that the association of protein phosphatase 2A with middle T antigen may function to activate PtdIns 3-kinase.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1738
Author(s):  
Hongying Zhang ◽  
Songpeng Yang ◽  
Jiao Wang ◽  
Yangfu Jiang

Aspirin can prevent or inhibit inflammation-related cancers, such as colorectal cancer and hepatocellular carcinoma (HCC). However, the effectiveness of chemotherapy may be compromised by activating oncogenic pathways in cancer cells. Elucidation of such chemoresistance mechanisms is crucial to developing novel strategies to maximize the anti-cancer effects of aspirin. Here, we report that aspirin markedly induces CREB/ATF1 phosphorylation in HCC cells, which compromises aspirin’s anti-HCC effect. Inhibition of AMP-activated protein kinase (AMPK) abrogates the induction of CREB/ATF1 phosphorylation by aspirin. Mechanistically, activation of AMPK by aspirin results in decreased expression of the urea cycle enzyme carbamoyl-phosphate synthase 1 (CPS1) in HCC cells and xenografts. Treatment with aspirin or CPS1 knockdown stimulates soluble adenylyl cyclase expression, thereby increasing cyclic AMP (cAMP) synthesis and stimulating PKA–CREB/ATF1 signaling. Importantly, abrogation of aspirin-induced CREB/ATF1 phosphorylation could sensitize HCC to aspirin. The bis-benzylisoquinoline alkaloid berbamine suppresses the expression of cancerous inhibitor of protein phosphatase 2A (CIP2A), leading to protein phosphatase 2A-mediated downregulation of CREB/ATF1 phosphorylation. The combination of berbamine and aspirin significantly inhibits HCC in vitro and in vivo. These data demonstrate that the regulation of cAMP-PKA-CREB/ATF1 signaling represents a noncanonical function of CPS1. Targeting the PKA–CREB/ATF1 axis may be a strategy to improve the therapeutic effects of aspirin on HCC.


1996 ◽  
Vol 16 (11) ◽  
pp. 6593-6602 ◽  
Author(s):  
K Okamoto ◽  
C Kamibayashi ◽  
M Serrano ◽  
C Prives ◽  
M C Mumby ◽  
...  

We and others previously showed that cyclin G is a transcriptional target of the p53 tumor suppressor protein. However, cellular proteins which might form a complex with cyclin G have not yet been identified. To gain insight into the biological role of cyclin G, we used the yeast two-hybrid screen and isolated two mouse cDNAs encoding cyclin G-interacting proteins. Interestingly, both positive cDNAs encoded B' regulatory subunits of protein phosphatase 2A (PP2A). One clone encodes B'alpha, while the other clone codes for a new member of the B' family, B'beta. B'beta is 70% identical to other members of the B' family. B'alpha associated both in vitro and in vivo with cyclin G but not with the other mammalian cyclins. Furthermore, cyclin G formed a complex with B'alpha only after induction of p53 in p53 temperature-sensitive cell lines. These results indicate that cyclin G forms a specific complex with the B' subunit of PP2A and that complex formation is regulated by p53. Potential roles for the cyclin G-B' complex in p53-mediated pathways are discussed.


2020 ◽  
Author(s):  
Yu Sun ◽  
Manveen K. Gupta ◽  
Kate Stenson ◽  
Maradumane L. Mohan ◽  
Nicholas Wanner ◽  
...  

AbstractIschemia/hypoxia is major underlying cause for heart failure and stroke. Although beta-adrenergic receptor (βAR) is phosphorylated in response to hypoxia, less is known about the underlying mechanisms. Hypoxia results in robust GRK2-mediated β2AR phosphorylation but does not cause receptor internalization. However, hypoxia leads to significant endosomal-β2AR phosphorylation accompanied by inhibition of β2AR-associated protein phosphatase 2A (PP2A) activity impairing resensitization. Phosphoinositide 3-kinase γ (PI3Kγ) impedes resensitization by phosphorylating endogenous inhibitor of protein phosphatase 2A, I2PP2A that inhibits PP2A activity. Hypoxia increased PI3Kγ activity leading to significant phosphorylation of I2PP2A resulting in inhibition of PP2A and consequently resensitization. Surprisingly, β-blocker abrogated hypoxia-mediated β2AR phosphorylation instead of phosphorylation in normoxia. Subjecting mice to hypoxia leads to significant cardiac dysfunction and β2AR phosphorylation showing conservation of non-canonical hypoxia-mediated pathway in vivo. These findings provide mechanistic insights on hypoxia-mediated βAR dysfunction which is rescued by β-blocker and will have significant implications in heart failure and stroke.


Sign in / Sign up

Export Citation Format

Share Document