scholarly journals A Hypervariable Region within the 3′ cis-Acting Element of the Murine Coronavirus Genome Is Nonessential for RNA Synthesis but Affects Pathogenesis

2006 ◽  
Vol 81 (3) ◽  
pp. 1274-1287 ◽  
Author(s):  
Scott J. Goebel ◽  
Timothy B. Miller ◽  
Corey J. Bennett ◽  
Kristen A. Bernard ◽  
Paul S. Masters

ABSTRACT The 3′ cis-acting element for mouse hepatitis virus (MHV) RNA synthesis resides entirely within the 301-nucleotide 3′ untranslated region (3′ UTR) of the viral genome and consists of three regions. Encompassing the upstream end of the 3′ UTR are a bulged stem-loop and an overlapping RNA pseudoknot, both of which are essential to MHV and common to all group 2 coronaviruses. At the downstream end of the genome is the minimal signal for initiation of negative-strand RNA synthesis. Between these two ends is a hypervariable region (HVR) that is only poorly conserved between MHV and other group 2 coronaviruses. Paradoxically, buried within the HVR is an octanucleotide motif (oct), 5′-GGAAGAGC-3′, which is almost universally conserved in coronaviruses and is therefore assumed to have a critical biological function. We conducted an extensive mutational analysis of the HVR. Surprisingly, this region tolerated numerous deletions, rearrangements, and point mutations. Most striking, a mutant deleted of the entire HVR was only minimally impaired in tissue culture relative to the wild type. By contrast, the HVR deletion mutant was highly attenuated in mice, causing no signs of clinical disease and minimal weight loss compared to wild-type virus. Correspondingly, replication of the HVR deletion mutant in the brains of mice was greatly reduced compared to that of the wild type. Our results show that neither the HVR nor oct is essential for the basic mechanism of MHV RNA synthesis in tissue culture. However, the HVR appears to play a significant role in viral pathogenesis.

2006 ◽  
Vol 80 (23) ◽  
pp. 11610-11620 ◽  
Author(s):  
Rachel L. Graham ◽  
Mark R. Denison

ABSTRACT Coronaviruses are positive-strand RNA viruses that translate their genome RNA into polyproteins that are co- and posttranslationally processed into intermediate and mature replicase nonstructural proteins (nsps). In murine hepatitis virus (MHV), nsps 1, 2, and 3 are processed by two papain-like proteinase activities within nsp3 (PLP1 and PLP2) to yield nsp1, an nsp2-3 intermediate, and mature nsp2 and nsp3. To determine the role in replication of processing between nsp2 and nsp3 at cleavage site 2 (CS2) and PLP1 proteinase activity, mutations were engineered into the MHV genome at CS2, at CS1 and CS2, and at the PLP1 catalytic site, alone and in combination. Mutant viruses with abolished cleavage at CS2 were delayed in growth and RNA synthesis but grew to wild-type titers of >107 PFU/ml. Mutant viruses with deletion of both CS1 and CS2 exhibited both a delay in growth and a decrease in peak viral titer to ∼104 PFU/ml. Inactivation of PLP1 catalytic residues resulted in a mutant virus that did not process at either CS1 or CS2 and was severely debilitated in growth, achieving only 102 PFU/ml. However, when both CS1 and CS2 were deleted in the presence of inactivated PLP1, the growth of the resulting mutant virus was partially compensated, comparable to that of the CS1 and CS2 deletion mutant. These results demonstrate that interactions of PLP1 with CS1 and CS2 are critical for protein processing and suggest that the interactions play specific roles in regulation of the functions of nsp1, 2, and 3 in viral RNA synthesis.


2009 ◽  
Vol 83 (23) ◽  
pp. 12084-12093 ◽  
Author(s):  
Pinghua Liu ◽  
Lichun Li ◽  
Sarah C. Keane ◽  
Dong Yang ◽  
Julian L. Leibowitz ◽  
...  

ABSTRACT Stem-loop 2 (SL2) of the 5′-untranslated region of the mouse hepatitis virus (MHV) contains a highly conserved pentaloop (C47-U48-U49-G50-U51) stacked on a 5-bp stem. Solution nuclear magnetic resonance experiments are consistent with a 5′-uYNMG(U)a or uCUYG(U)a tetraloop conformation characterized by an anti-C47-syn-G50 base-pairing interaction, with U51 flipped out into solution and G50 stacked on A52. Previous studies showed that U48C and U48A substitutions in MHV SL2 were lethal, while a U48G substitution was viable. Here, we characterize viruses harboring all remaining single-nucleotide substitutions in the pentaloop of MHV SL2 and also investigate the degree to which the sequence context of key pentaloop point mutations influences the MHV replication phenotype. U49 or U51 substitution mutants all are viable; C47 substitution mutants also are viable but produce slightly smaller plaques than wild-type virus. In contrast, G50A and G50C viruses are severely crippled and form much smaller plaques. Virus could not be recovered from G50U-containing mutants; rather, only true wild-type revertants or a virus, G50U/C47A, containing a second site mutation were recovered. These functional data suggest that the Watson-Crick edges of C47 and G50 (or A47 and U50 in the G50U/C47A mutant) are in close enough proximity to a hydrogen bond with U51 flipped out of the hairpin. Remarkably, increasing the helical stem stability rescues the previously lethal mutants U48C and G50U. These studies suggest that SL2 functions as an important, but rather plastic, structural element in stimulating subgenomic RNA synthesis in coronaviruses.


2006 ◽  
Vol 80 (1) ◽  
pp. 440-450 ◽  
Author(s):  
John W. Balliet ◽  
Priscilla A. Schaffer

ABSTRACT In vitro studies of herpes simplex virus type 1 (HSV-1) viruses containing mutations in core sequences of the viral origins of DNA replication, oriL and oriS, that eliminate the ability of these origins to initiate viral-DNA synthesis have demonstrated little or no effect on viral replication in cultured cells, leading to the conclusion that the two types of origins are functionally redundant. It remains unclear, therefore, why origins that appear to be redundant are maintained evolutionarily in HSV-1 and other neurotropic alphaherpesviruses. To test the hypothesis that oriL and oriS have distinct functions in the HSV-1 life cycle in vivo, we determined the in vivo phenotypes of two mutant viruses, DoriL-ILR and DoriS-I, containing point mutations in oriL and oriS site I, respectively, that eliminate origin DNA initiation function. Following corneal inoculation of mice, tear film titers of DoriS-I were reduced relative to wild-type virus. In all other tests, however, DoriS-I behaved like wild-type virus. In contrast, titers of DoriL-ILR in tear film, trigeminal ganglia (TG), and hindbrain were reduced and mice infected with DoriL-ILR exhibited greatly reduced mortality relative to wild-type virus. In the TG explant and TG cell culture models of reactivation, DoriL-ILR reactivated with delayed kinetics and, in the latter model, with reduced efficiency relative to wild-type virus. Rescuant viruses DoriL-ILR-R and DoriS-I-R behaved like wild-type virus in all tests. These findings demonstrate that functional differences exist between oriL and oriS and reveal a prominent role for oriL in HSV-1 pathogenesis.


2003 ◽  
Vol 77 (4) ◽  
pp. 2301-2309 ◽  
Author(s):  
Yukio Shirako ◽  
Ellen G. Strauss ◽  
James H. Strauss

ABSTRACT We have previously shown that Sindbis virus RNA polymerase requires an N-terminal aromatic amino acid or histidine for wild-type or pseudo-wild-type function; mutant viruses with a nonaromatic amino acid at the N terminus of the polymerase, but which are otherwise wild type, are unable to produce progeny viruses and will not form a plaque at any temperature tested. We now show that such mutant polymerases can function to produce progeny virus sufficient to form plaques at both 30 and 40°C upon addition of AU, AUA, or AUU to the 5′ terminus of the genomic RNA or upon substitution of A for U as the third nucleotide of the genome. These results are consistent with the hypothesis that (i) 3′-UA-5′ is required at the 3′ terminus of the minus-strand RNA for initiation of plus-strand genomic RNA synthesis; (ii) in the wild-type virus this sequence is present in a secondary structure that can be opened by the wild-type polymerase but not by the mutant polymerase; (iii) the addition of AU, AUA, or AUU to the 5′ end of the genomic RNA provides unpaired 3′-UA-5′ at the 3′ end of the minus strand that can be utilized by the mutant polymerase, and similarly, the effect of the U3A mutation is to destabilize the secondary structure, freeing 3′-terminal UA; and (iv) the N terminus of nsP4 may directly interact with the 3′ terminus of the minus-strand RNA for the initiation of the plus-strand genomic RNA synthesis. This hypothesis is discussed in light of our present results as well as of previous studies of alphavirus RNAs, including defective interfering RNAs.


1988 ◽  
Vol 8 (6) ◽  
pp. 2523-2535
Author(s):  
J H Hegemann ◽  
J H Shero ◽  
G Cottarel ◽  
P Philippsen ◽  
P Hieter

Saccharomyces cerevisiae centromeres have a characteristic 120-base-pair region consisting of three distinct centromere DNA sequence elements (CDEI, CDEII, and CDEIII). We have generated a series of 26 CEN mutations in vitro (including 22 point mutations, 3 insertions, and 1 deletion) and tested their effects on mitotic chromosome segregation by using a new vector system. The yeast transformation vector pYCF5 was constructed to introduce wild-type and mutant CEN DNAs onto large, linear chromosome fragments which are mitotically stable and nonessential. Six point mutations in CDEI show increased rates of chromosome loss events per cell division of 2- to 10-fold. Twenty mutations in CDEIII exhibit chromosome loss rates that vary from wild type (10(-4)) to nonfunctional (greater than 10(-1)). These results directly identify nucleotides within CDEI and CDEIII that are required for the specification of a functional centromere and show that the degree of conservation of an individual base does not necessarily reflect its importance in mitotic CEN function.


Author(s):  
Zsolt Csabai ◽  
Dóra Tombácz ◽  
Zoltán Deim ◽  
Michael Snyder ◽  
Zsolt Boldogkői

Background. Pseudorabies virus (PRV) is the causative agent of Aujeszky’s disease giving rise to significant economic losses worldwide. Many countries have implemented national programs for the eradication of this virus. In this study, long-read sequencing was used to determine the nucleotide sequence of the genome of a novel PRV strain (PRV-MdBio) isolated in Serbia.Results. In this study, a novel PRV strain was isolated and characterized. PRV-MdBio was found to exhibit similar growth properties to those of another wild-type PRV, the strain Kaplan. Single-molecule real-time (SMRT) sequencing has revealed that the new strain differs significantly in base composition even from strain Kaplan, to which it otherwise exhibits the highest similarity. We compared the genetic composition of PRV-MdBio to strain Kaplan and the China reference strain Ea and obtained that radical base replacements were the most common point mutations preceding conservative and silent mutations. We also found that the adaptation of PRV to cell culture does not lead to any tendentious genetic alteration in the viral genome.Conclusion. PRV-MdBio is a wild-type virus, which differs in base composition from other PRV strains to a relatively large extent.


2008 ◽  
Vol 82 (19) ◽  
pp. 9730-9738 ◽  
Author(s):  
Christoph Wirblich ◽  
Gene S. Tan ◽  
Amy Papaneri ◽  
Peter J. Godlewski ◽  
Jan Marc Orenstein ◽  
...  

ABSTRACT Late (L) domains containing the highly conserved sequence PPXY were first described for retroviruses, and later research confirmed their conservation and importance for efficient budding of several negative-stranded RNA viruses. Rabies virus (RV), a member of the Rhabdoviridae family, contains the sequence PPEY (amino acids 35 to 38) within the N terminus of the matrix (M) protein, but the functions of this potential L-domain in the viral life cycle, viral pathogenicity, and immunogenicity have not been established. Here we constructed a series of recombinant RVs containing mutations within the PPEY motif and analyzed their effects on viral replication and RV pathogenicity. Our results indicate that the first proline at position 35 is the most important for viral replication, whereas P36 and Y38 have a lesser but still noticeable impact. The reduction in viral replication was most likely due to inhibition of virion release, because initially no major impact on RV RNA synthesis was observed. In addition, results from electron microscopy demonstrated that the M4A mutant virus (PPEY→SAEA) displayed a more cell-associated phenotype than that of wild-type RV. Furthermore, all mutations within the PPEY motif resulted in reduced spread of the recombinant RVs as indicated by a reduction in focus size. Importantly, recombinant PPEY L-domain mutants were highly attenuated in mice yet still elicited potent antibody responses against RV G protein that were as high as those observed after infection with wild-type virus. Our data indicate that the RV PPEY motif has L-domain activity essential for efficient virus production and pathogenicity but is not essential for immunogenicity and thus can be targeted to increase the safety of rabies vaccine vectors.


2004 ◽  
Vol 78 (11) ◽  
pp. 5957-5965 ◽  
Author(s):  
Mark R. Denison ◽  
Boyd Yount ◽  
Sarah M. Brockway ◽  
Rachel L. Graham ◽  
Amy C. Sims ◽  
...  

ABSTRACT The p28 and p65 proteins of mouse hepatitis virus (MHV) are the most amino-terminal protein domains of the replicase polyprotein. Cleavage between p28 and p65 has been shown to occur in vitro at cleavage site 1 (CS1), 247Gly↓Val248, in the polyprotein. Although critical residues for CS1 cleavage have been mapped in vitro, the requirements for cleavage have not been studied in infected cells. To define the determinants of CS1 cleavage and the role of processing at this site during MHV replication, mutations and deletions were engineered in the replicase polyprotein at CS1. Mutations predicted to allow cleavage at CS1 yielded viable virus that grew to wild-type MHV titers and showed normal expression and processing of p28 and p65. Mutant viruses containing predicted noncleaving mutations or a CS1 deletion were also viable but demonstrated delayed growth kinetics, reduced peak titers, decreased RNA synthesis, and small plaques compared to wild-type controls. No p28 or p65 was detected in cells infected with predicted noncleaving CS1 mutants or the CS1 deletion mutant; however, a new protein of 93 kDa was detected. All introduced mutations and the deletion were retained during repeated virus passages in culture, and no phenotypic reversion was observed. The results of this study demonstrate that cleavage between p28 and p65 at CS1 is not required for MHV replication. However, proteolytic separation of p28 from p65 is necessary for optimal RNA synthesis and virus growth, suggesting important roles for these proteins in the formation or function of viral replication complexes.


2004 ◽  
Vol 78 (9) ◽  
pp. 4566-4572 ◽  
Author(s):  
Zhensheng Zhang ◽  
Ulrike Protzer ◽  
Zongyi Hu ◽  
James Jacob ◽  
T. Jake Liang

ABSTRACT The X protein (HBX) of the hepatitis B virus (HBV) is not essential for the HBV life cycle in vitro but is important for productive infection in vivo. Our previous study suggests that interaction of HBX with the proteasome complex may underlie the pleiotropic functions of HBX. With the woodchuck model, we demonstrated that the X-deficient mutants of woodchuck hepatitis virus (WHV) are not completely replication defective, possibly behaving like attenuated viruses. In the present study, we analyzed the effects of the proteasome inhibitors on the replication of wild-type and X-negative HBV and WHV. Recombinant adenoviruses or baculoviruses expressing replicating HBV or WHV genomes have been developed as a robust and convenient system to study viral replication in tissue culture. In cells infected with either the recombinant adenovirus-HBV or baculovirus-WHV, the replication level of the X-negative construct was about 10% of that of the wild-type virus. In the presence of proteasome inhibitors, the replication of the wild-type virus was not affected, while the replication of the X-negative virus of either HBV or WHV was enhanced and restored to the wild-type level. Our data suggest that HBX affects hepadnavirus replication through a proteasome-dependent pathway.


2005 ◽  
Vol 49 (7) ◽  
pp. 2720-2728 ◽  
Author(s):  
Stephan Menne ◽  
Paul J. Cote ◽  
Brent E. Korba ◽  
Scott D. Butler ◽  
Andrea L. George ◽  
...  

ABSTRACT Tenofovir disoproxil fumarate (TDF) is a nucleotide analogue approved for treatment of human immunodeficiency virus (HIV) infection. TDF also has been shown in vitro to inhibit replication of wild-type hepatitis B virus (HBV) and lamivudine-resistant HBV mutants and to inhibit lamivudine-resistant HBV in patients and HBV in patients coinfected with the HIV. Data on the in vivo efficacy of TDF against wild-type virus in non-HIV-coinfected or lamivudine-naïve chronic HBV-infected patients are lacking in the published literature. The antiviral effect of oral administration of TDF against chronic woodchuck hepatitis virus (WHV) infection, an established and predictive animal model for antiviral therapy, was evaluated in a placebo-controlled, dose-ranging study (doses, 0.5 to 15.0 mg/kg of body weight/day). Four weeks of once-daily treatment with TDF doses of 0.5, 1.5, or 5.0 mg/kg/day reduced serum WHV viremia significantly (0.2 to 1.5 log reduction from pretreatment level). No effects on the levels of anti-WHV core and anti-WHV surface antibodies in serum or on the concentrations of WHV RNA or WHV antigens in the liver of treated woodchucks were observed. Individual TDF-treated woodchucks demonstrated transient declines in WHV surface antigen serum antigenemia and, characteristically, these woodchucks also had transient declines in serum WHV viremia, intrahepatic WHV replication, and hepatic expression of WHV antigens. No evidence of toxicity was observed in any of the TDF-treated woodchucks. Following drug withdrawal there was prompt recrudescence of WHV viremia to pretreatment levels. It was concluded that oral administration of TDF for 4 weeks was safe and effective in the woodchuck model of chronic HBV infection.


Sign in / Sign up

Export Citation Format

Share Document