scholarly journals Protective Efficacy and Immunogenicity of an Adenoviral Vector Vaccine Encoding the Codon-Optimized F Protein of Respiratory Syncytial Virus

2009 ◽  
Vol 83 (23) ◽  
pp. 12601-12610 ◽  
Author(s):  
Rebekka Kohlmann ◽  
Sarah Schwannecke ◽  
Bettina Tippler ◽  
Nicola Ternette ◽  
Vladimir V. Temchura ◽  
...  

ABSTRACT Adenoviral vectors (AdV) have received considerable attention for vaccine development because of their high immunogenicity and efficacy. In previous studies, it was shown that DNA immunization of mice with codon-optimized expression plasmids encoding the fusion protein of respiratory syncytial virus (RSV F) resulted in enhanced protection against RSV challenge compared to immunization with plasmids carrying the wild-type cDNA sequence of RSV F. In this study, we constructed AdV carrying the codon-optimized full-length RSV F gene (AdV-F) or the soluble form of the RSV F gene (AdV-Fsol). BALB/c mice were immunized twice with AdV-F or AdV-Fsol and challenged with RSV intranasally. Substantial levels of antibody to RSV F were induced by both AdV vaccines, with peak neutralizing-antibody titers of 1:900. Consistently, the viral loads in lung homogenates and bronchoalveolar lavage fluids were significantly reduced by a factor of more than 60,000. The protection against viral challenge could be measured even 8 months after the booster immunization. AdV-F and AdV-Fsol induced similar levels of immunogenicity and protective efficacy. Therefore, these results encourage further development of AdV vaccines against RSV infection in humans.

Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2525
Author(s):  
Mariko Saito ◽  
Hiroyuki Tsukagoshi ◽  
Mitsuru Sada ◽  
Soyoka Sunagawa ◽  
Tatsuya Shirai ◽  
...  

We performed evolution, phylodynamics, and reinfection-related antigenicity analyses of respiratory syncytial virus subgroup A (RSV-A) fusion (F) gene in globally collected strains (1465 strains) using authentic bioinformatics methods. The time-scaled evolutionary tree using the Bayesian Markov chain Monte Carlo method estimated that a common ancestor of the RSV-A, RSV-B, and bovine-RSV diverged at around 450 years ago, and RSV-A and RSV-B diverged around 250 years ago. Finally, the RSV-A F gene formed eight genotypes (GA1‑GA7 and NA1) over the last 80 years. Phylodynamics of RSV-A F gene, including all genotype strains, increased twice in the 1990s and 2010s, while patterns of each RSV-A genotype were different. Phylogenetic distance analysis suggested that the genetic distances of the strains were relatively short (less than 0.05). No positive selection sites were estimated, while many negative selection sites were found. Moreover, the F protein 3D structure mapping and conformational epitope analysis implied that the conformational epitopes did not correspond to the neutralizing antibody binding sites of the F protein. These results suggested that the RSV-A F gene is relatively conserved, and mismatches between conformational epitopes and neutralizing antibody binding sites of the F protein are responsible for the virus reinfection.


2015 ◽  
Vol 89 (16) ◽  
pp. 8193-8205 ◽  
Author(s):  
Sandra Fuentes ◽  
Elizabeth M. Coyle ◽  
Hana Golding ◽  
Surender Khurana

ABSTRACTNew efforts are under way to develop a vaccine against respiratory syncytial virus (RSV) that will provide protective immunity without the potential for vaccine-associated disease enhancement such as that observed in infants following vaccination with formalin-inactivated RSV vaccine. In addition to the F fusion protein, the G attachment surface protein is a target for neutralizing antibodies and thus represents an important vaccine candidate. However, glycosylated G protein expressed in mammalian cells has been shown to induce pulmonary eosinophilia upon RSV infection in a mouse model. In the current study, we evaluated in parallel the safety and protective efficacy of the RSV A2 recombinant unglycosylated G protein ectodomain (amino acids 67 to 298) expressed inEscherichia coli(REG) and those of glycosylated G produced in mammalian cells (RMG) in a mouse RSV challenge model. Vaccination with REG generated neutralizing antibodies against RSV A2 in 7/11 BALB/c mice, while RMG did not elicit neutralizing antibodies. Total serum binding antibodies against the recombinant proteins (both REG and RMG) were measured by surface plasmon resonance (SPR) and were found to be >10-fold higher for REG- than for RMG-vaccinated animals. Reduction of lung viral loads to undetectable levels after homologous (RSV-A2) and heterologous (RSV-B1) viral challenge was observed in 7/8 animals vaccinated with REG but not in RMG-vaccinated animals. Furthermore, enhanced lung pathology and elevated Th2 cytokines/chemokines were observed exclusively in animals vaccinated with RMG (but not in those vaccinated with REG or phosphate-buffered saline [PBS]) after homologous or heterologous RSV challenge. This study suggests that bacterially produced unglycosylated G protein could be developed alone or as a component of a protective vaccine against RSV disease.IMPORTANCENew efforts are under way to develop vaccines against RSV that will provide protective immunity without the potential for disease enhancement. The G attachment protein represents an important candidate for inclusion in an effective RSV vaccine. In the current study, we evaluated the safety and protective efficacy of the RSV A2 recombinant unglycosylated G protein ectodomain produced inE. coli(REG) and those of glycosylated G produced in mammalian cells (RMG) in a mouse RSV challenge model (strains A2 and B1). The unglycosylated G generated high protective immunity and no lung pathology, even in animals that lacked anti-RSV neutralizing antibodies prior to RSV challenge. Control of viral loads correlated with antibody binding to the G protein. In contrast, the glycosylated G protein provided poor protection and enhanced lung pathology after RSV challenge. Therefore, bacterially produced unglycosylated G protein holds promise as an economical approach to a protective vaccine against RSV.


2016 ◽  
Vol 90 (11) ◽  
pp. 5485-5498 ◽  
Author(s):  
Concepción Palomo ◽  
Vicente Mas ◽  
Michelle Thom ◽  
Mónica Vázquez ◽  
Olga Cano ◽  
...  

ABSTRACTHuman respiratory syncytial virus (hRSV) vaccine development has received new impetus from structure-based studies of its main protective antigen, the fusion (F) glycoprotein. Three soluble forms of F have been described: monomeric, trimeric prefusion, and trimeric postfusion. Most human neutralizing antibodies recognize epitopes found exclusively in prefusion F. Although prefusion F induces higher levels of neutralizing antibodies than does postfusion F, postfusion F can also induce protection against virus challenge in animals. However, the immunogenicity and protective efficacy of the three forms of F have not hitherto been directly compared. Hence, BALB/c mice were immunized with a single dose of the three proteins adjuvanted with CpG and challenged 4 weeks later with virus. Serum antibodies, lung virus titers, weight loss, and pulmonary pathology were evaluated after challenge. Whereas small amounts of postfusion F were sufficient to protect mice, larger amounts of monomeric and prefusion F proteins were required for protection. However, postfusion and monomeric F proteins were associated with more pathology after challenge than was prefusion F. Antibodies induced by all doses of prefusion F, in contrast to other F protein forms, reacted predominantly with the prefusion F conformation. At high doses, prefusion F also induced the highest titers of neutralizing antibodies, and all mice were protected, yet at low doses of the immunogen, these antibodies neutralized virus poorly, and mice were not protected. These findings should be considered when developing new hRSV vaccine candidates.IMPORTANCEProtection against hRSV infection is afforded mainly by neutralizing antibodies, which recognize mostly epitopes found exclusively in the viral fusion (F) glycoprotein trimer, folded in its prefusion conformation, i.e., before activation for membrane fusion. Although prefusion F is able to induce high levels of neutralizing antibodies, highly stable postfusion F (found after membrane fusion) is also able to induce neutralizing antibodies and protect against infection. In addition, a monomeric form of hRSV F that shares epitopes with prefusion F was recently reported. Since each of the indicated forms of hRSV F may have advantages and disadvantages for the development of safe and efficacious subunit vaccines, a direct comparison of the immunogenic properties and protective efficacies of the different forms of hRSV F was made in a mouse model. The results obtained show important differences between the noted immunogens that should be borne in mind when considering the development of hRSV vaccines.


2002 ◽  
Vol 76 (22) ◽  
pp. 11561-11569 ◽  
Author(s):  
Rik L. de Swart ◽  
Thijs Kuiken ◽  
Helga H. Timmerman ◽  
Geert van Amerongen ◽  
Bernadette G. van den Hoogen ◽  
...  

ABSTRACT Respiratory syncytial virus (RSV) is a major cause of severe respiratory disease in infants and the elderly. RSV vaccine development has been hampered by results of clinical trials in the 1960s, when formalin-inactivated whole-RSV preparations adjuvated with alum (FI-RSV) were found to predispose infants for enhanced disease following subsequent natural RSV infection. We have reproduced this apparently immunopathological phenomenon in infant cynomolgus macaques and identified immunological and pathological correlates. Vaccination with FI-RSV induced specific virus-neutralizing antibody responses accompanied by strong lymphoproliferative responses. The vaccine-induced RSV-specific T cells predominantly produced the Th2 cytokines interleukin-13 (IL-13) and IL-5. Intratracheal challenge with a macaque-adapted wild-type RSV 3 months after the third vaccination elicited a hypersensitivity response associated with lung eosinophilia. The challenge resulted in a rapid boosting of IL-13-producing T cells in the FI-RSV-vaccinated animals but not in the FI-measles virus-vaccinated control animals. Two out of seven FI-RSV-vaccinated animals died 12 days after RSV challenge with pulmonary hyperinflation. Surprisingly, the lungs of these two animals did not show overt inflammatory lesions. However, upon vaccination the animals had shown the strongest lymphoproliferative responses associated with the most pronounced Th2 phenotype within their group. We hypothesize that an IL-13-associated asthma-like mechanism resulted in airway hyperreactivity in these animals. This nonhuman primate model will be an important tool to assess the safety of nonreplicating candidate RSV vaccines.


1998 ◽  
Vol 188 (4) ◽  
pp. 681-688 ◽  
Author(s):  
Xiaomao Li ◽  
Suryaprakash Sambhara ◽  
Cindy Xin Li ◽  
Mary Ewasyshyn ◽  
Mark Parrington ◽  
...  

Respiratory syncytial virus (RSV) remains a major cause of morbidity and mortality in infants and the elderly and is a continuing challenge for vaccine development. A murine T helper cell (Th) type 2 response associates with enhanced lung pathology, which has been observed in past infant trials using formalin-inactivated RSV vaccine. In this study, we have engineered an optimized plasmid DNA vector expressing the RSV fusion (F) protein (DNA-F). DNA-F was as effective as live RSV in mice at inducing neutralizing antibody and cytotoxic T lymphocyte responses, protection against infection, and high mRNA expression of lung interferon γ after viral challenge. Furthermore, a DNA-F boost could switch a preestablished anti-RSV Th2 response towards a Th1 response. Critical elements for the optimization of the plasmid constructs included expression of a secretory form of the F protein and the presence of the rabbit β-globin intron II sequence upstream of the F-encoding sequence. In addition, anti-F systemic immune response profile could be modulated by the route of DNA-F delivery: intramuscular immunization resulted in balanced responses, whereas intradermal immunization resulted in a Th2 type of response. Thus, DNA-F immunization may provide a novel and promising RSV vaccination strategy.


2020 ◽  
Vol 16 (11) ◽  
pp. e1008943
Author(s):  
Wayne Harshbarger ◽  
Sai Tian ◽  
Newton Wahome ◽  
Ankita Balsaraf ◽  
Deep Bhattacharya ◽  
...  

Respiratory syncytial virus (RSV) is a global public health burden for which no licensed vaccine exists. To aid vaccine development via increased understanding of the protective antibody response to RSV prefusion glycoprotein F (PreF), we performed structural and functional studies using the human neutralizing antibody (nAb) RSB1. The crystal structure of PreF complexed with RSB1 reveals a conformational, pre-fusion specific site V epitope with a unique cross-protomer binding mechanism. We identify shared structural features between nAbs RSB1 and CR9501, elucidating for the first time how diverse germlines obtained from different subjects can develop convergent molecular mechanisms for recognition of the same PreF site of vulnerability. Importantly, RSB1-like nAbs were induced upon immunization with PreF in naturally-primed cattle. Together, this work reveals new details underlying the immunogenicity of site V and further supports PreF-based vaccine development efforts.


Vaccines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 624
Author(s):  
Laura M. Stephens ◽  
Steven M. Varga

Respiratory syncytial virus (RSV) is most commonly associated with acute lower respiratory tract infections in infants and children. However, RSV also causes a high disease burden in the elderly that is often under recognized. Adults >65 years of age account for an estimated 80,000 RSV-associated hospitalizations and 14,000 deaths in the United States annually. RSV infection in aged individuals can result in more severe disease symptoms including pneumonia and bronchiolitis. Given the large disease burden caused by RSV in the aged, this population remains an important target for vaccine development. Aging results in lowered immune responsiveness characterized by impairments in both innate and adaptive immunity. This immune senescence poses a challenge when developing a vaccine targeting elderly individuals. An RSV vaccine tailored towards an elderly population will need to maximize the immune response elicited in order to overcome age-related defects in the immune system. In this article, we review the hurdles that must be overcome to successfully develop an RSV vaccine for use in the elderly, and discuss the vaccine candidates currently being tested in this highly susceptible population.


2021 ◽  
Vol 13 (583) ◽  
pp. eabe5449
Author(s):  
Nicole Darricarrère ◽  
Yu Qiu ◽  
Masaru Kanekiyo ◽  
Adrian Creanga ◽  
Rebecca A. Gillespie ◽  
...  

Seasonal influenza vaccines confer protection against specific viral strains but have restricted breadth that limits their protective efficacy. The H1 and H3 subtypes of influenza A virus cause most of the seasonal epidemics observed in humans and are the major drivers of influenza A virus–associated mortality. The consequences of pandemic spread of COVID-19 underscore the public health importance of prospective vaccine development. Here, we show that headless hemagglutinin (HA) stabilized-stem immunogens presented on ferritin nanoparticles elicit broadly neutralizing antibody (bnAb) responses to diverse H1 and H3 viruses in nonhuman primates (NHPs) when delivered with a squalene-based oil-in-water emulsion adjuvant, AF03. The neutralization potency and breadth of antibodies isolated from NHPs were comparable to human bnAbs and extended to mismatched heterosubtypic influenza viruses. Although NHPs lack the immunoglobulin germline VH1-69 residues associated with the most prevalent human stem-directed bnAbs, other gene families compensated to generate bnAbs. Isolation and structural analyses of vaccine-induced bnAbs revealed extensive interaction with the fusion peptide on the HA stem, which is essential for viral entry. Antibodies elicited by these headless HA stabilized-stem vaccines neutralized diverse H1 and H3 influenza viruses and shared a mode of recognition analogous to human bnAbs, suggesting that these vaccines have the potential to confer broadly protective immunity against diverse viruses responsible for seasonal and pandemic influenza infections in humans.


PLoS ONE ◽  
2013 ◽  
Vol 8 (8) ◽  
pp. e72217 ◽  
Author(s):  
Viktoria Stab ◽  
Sandra Nitsche ◽  
Thomas Niezold ◽  
Michael Storcksdieck genannt Bonsmann ◽  
Andrea Wiechers ◽  
...  

2017 ◽  
Vol 91 (13) ◽  
Author(s):  
Normand Blais ◽  
Martin Gagné ◽  
Yoshitomo Hamuro ◽  
Patrick Rheault ◽  
Martine Boyer ◽  
...  

ABSTRACT The human respiratory syncytial virus (hRSV) fusion (F) protein is considered a major target of the neutralizing antibody response to hRSV. This glycoprotein undergoes a major structural shift from the prefusion (pre-F) to the postfusion (post-F) state at the time of virus-host cell membrane fusion. Recent evidences suggest that the pre-F state is a superior target for neutralizing antibodies compared to the post-F state. Therefore, for vaccine purposes, we have designed and characterized a recombinant hRSV F protein, called Pre-F-GCN4t, stabilized in a pre-F conformation. To show that Pre-F-GCN4t does not switch to a post-F conformation, it was compared with a recombinant post-F molecule, called Post-F-XC. Pre-F-GCN4t was glycosylated and trimeric and displayed a conformational stability different from that of Post-F-XC, as shown by chemical denaturation. Electron microscopy analysis suggested that Pre-F-GCN4t adopts a lollipop-like structure. In contrast, Post-F-XC had a typical elongated conical shape. Hydrogen/deuterium exchange mass spectrometry demonstrated that the two molecules had common rigid folding core and dynamic regions and provided structural insight for their biophysical and biochemical properties and reactivity. Pre-F-GCN4t was shown to deplete hRSV-neutralizing antibodies from human serum more efficiently than Post-F-XC. Importantly, Pre-F-GCN4t was also shown to bind D25, a highly potent monoclonal antibody specific for the pre-F conformation. In conclusion, this construct presents several pre-F characteristics, does not switch to the post-F conformation, and presents antigenic features required for a protective neutralizing antibody response. Therefore, Pre-F-GCN4t can be considered a promising candidate vaccine antigen. IMPORTANCE Human respiratory syncytial virus (RSV) is a global leading cause of infant mortality and adult morbidity. The development of a safe and efficacious RSV vaccine remains an important goal. The RSV class I fusion (F) glycoprotein is considered one of the most promising vaccine candidates, and recent evidences suggest that the prefusion (pre-F) state is a superior target for neutralizing antibodies. Our study presents the physicochemical characterization of Pre-F-GCN4t, a molecule designed to be stabilized in the pre-F conformation. To confirm its pre-F conformation, Pre-F-GCN4t was analyzed in parallel with Post-F-XC, a molecule in the post-F conformation. Our results show that Pre-F-GCN4t presents characteristics of a stabilized pre-F conformation and support its use as an RSV vaccine antigen. Such an antigen may represent a significant advance in the development of an RSV vaccine.


Sign in / Sign up

Export Citation Format

Share Document