scholarly journals Visualization of Calcium Ion Loss from Rotavirus during Cell Entry

2018 ◽  
Vol 92 (24) ◽  
Author(s):  
Eric N. Salgado ◽  
Brian Garcia Rodriguez ◽  
Nagarjun Narayanaswamy ◽  
Yamuna Krishnan ◽  
Stephen C. Harrison

ABSTRACTBound calcium ions stabilize many nonenveloped virions. Loss of Ca2+from these particles appears to be a regulated part of entry or uncoating. The outer layer of an infectious rotavirus triple-layered particle (TLP) comprises a membrane-interacting protein (VP4) anchored by a Ca2+-stabilized protein (VP7). Membrane-coupled conformational changes in VP4 (cleaved to VP8* and VP5*) and dissociation of VP4 and VP7 accompany penetration of the double-layered inner capsid particle (DLP) into the cytosol. Removal of Ca2+in vitrostrips away both outer layer proteins; we and others have postulated that the loss of Ca2+triggers molecular events in viral penetration. We have now investigated, with the aid of a fluorescent Ca2+sensor, the timing of Ca2+loss from entering virions with respect to the dissociation of VP4 and VP7. In live-cell imaging experiments, distinct fluorescent markers on the DLP and on VP7 report on outer layer dissociation and DLP release. The Ca2+sensor, placed on VP5*, monitors the Ca2+concentration within the membrane-bound vesicle enclosing the entering particle. Slow (1-min duration) loss of Ca2+precedes the onset of VP7 dissociation by about 2 min and DLP release by about 7 min. Coupled with our previous results showing that VP7 loss follows tight binding to the cell surface by about 5 min, these data indicate that Ca2+loss begins as soon as the particle has become fully engulfed within the uptake vesicle. We discuss the implications of these findings for the molecular mechanism of membrane disruption during viral entry.IMPORTANCENonenveloped viruses penetrate into the cytosol of the cells that they infect by disrupting the membrane of an intracellular compartment. The molecular mechanisms of membrane disruption remain largely undefined. Functional reconstitution of infectious rotavirus particles (TLPs) from RNA-containing core particles (DLPs) and the outer layer proteins that deliver them into a cell makes these important pediatric pathogens particularly good models for studying nonenveloped virus entry. We report here how the use of a fluorescent Ca2+sensor, covalently linked to one of the viral proteins, allows us to establish, using live-cell imaging, the timing of Ca2+loss from an entering particle and other molecular events in the entry pathway. Specific Ca2+binding stabilizes many other viruses of eukaryotes, and Ca2+loss appears to be a trigger for steps in penetration or uncoating. The experimental design that we describe may be useful for studying entry of other viral pathogens.

2015 ◽  
Vol 44 (12) ◽  
pp. 5763-5770 ◽  
Author(s):  
Shyamaprosad Goswami ◽  
Krishnendu Aich ◽  
Sangita Das ◽  
Chitrangada Das Mukhopadhyay ◽  
Deblina Sarkar ◽  
...  

A new quinoline based sensor was developed and applied for the selective detection of Cd2+ both in vitro and in vivo.


2021 ◽  
Author(s):  
Y. Bousmah ◽  
H. Valenta ◽  
G. Bertolin ◽  
U. Singh ◽  
V. Nicolas ◽  
...  

AbstractYellow fluorescent proteins (YFP) are widely used as optical reporters in Förster Resonance Energy Transfer (FRET) based biosensors. Although great improvements have been done, the sensitivity of the biosensors is still limited by the low photostability and the poor fluorescence performances of YFPs at acidic pHs. In fact, today, there is no yellow variant derived from the EYFP with a pK1/2 below ∼5.5. Here, we characterize a new yellow fluorescent protein, tdLanYFP, derived from the tetrameric protein from the cephalochordate B. lanceolatum, LanYFP. With a quantum yield of 0.92 and an extinction coefficient of 133 000 mol−1.L.cm−1, it is, to our knowledge, the brightest dimeric fluorescent protein available, and brighter than most of the monomeric YFPs. Contrasting with EYFP and its derivatives, tdLanYFP has a very high photostability in vitro and preserves this property in live cells. As a consequence, tdLanYFP allows the imaging of cellular structures with sub-diffraction resolution with STED nanoscopy. We also demonstrate that the combination of high brightness and strong photostability is compatible with the use of spectro-microscopies in single molecule regimes. Its very low pK1/2 of 3.9 makes tdLanYFP an excellent tag even at acidic pHs. Finally, we show that tdLanYFP can be a FRET partner either as donor or acceptor in different biosensing modalities. Altogether, these assets make tdLanYFPa very attractive yellow fluorescent protein for long-term or single-molecule live-cell imaging that is also suitable for FRET experiment including at acidic pH.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Tatsuma Yao ◽  
Rie Suzuki ◽  
Natsuki Furuta ◽  
Yuka Suzuki ◽  
Kyoko Kabe ◽  
...  

2014 ◽  
Vol 90 (6) ◽  
Author(s):  
Rui Wang ◽  
Yan-Li Dang ◽  
Ru Zheng ◽  
Yue Li ◽  
Weiwei Li ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Qiaojia Zheng ◽  
Zhi Yu ◽  
Yanping Yuan ◽  
Danli Sun ◽  
Yakubu Saddeeq Abubakar ◽  
...  

Ypt1 is a small Rab GTPase in yeast, Gyp1 functions at the Golgi as a negative regulator of Ypt1. Gyp1 homologs are conserved in filamentous fungi. However, the roles of Gyp1 in phytopathogenic fungi are still unclear. Herein, we investigated the functions of FgGyp1 in the wheat pathogen Fusarium graminearum by live-cell imaging, genetic, and pathological analyses. Targeted gene replacement method was used to delete FgGYP1 in F. graminearum. Phenotypic analyses showed that FgGyp1 is critically important not only for the vegetative growth of F. graminearum but also its conidiation. The mutant’s vegetative growth was significantly reduced by 70% compared to the wild type PH-1. The virulence of FgGYP1 deletion mutant was significantly decreased when compared with the wild type PH-1. We further found that FgGyp1 negatively regulates DON production of the fungus. Live-cell imaging clearly demonstrated that FgGyp1 mainly localizes to the Golgi apparatus. Moreover, the TBC domain, C-terminal, and N-terminal regions of FgGyp1 are found to be indispensable for its biological functions and normal localization. The Arg357 residue of FgGyp1 is essential for its functions but dispensable for the normal localization of the protein, while the Arg284 residue is not required for both the functions and normal localization of the protein. Furthermore, we showed that FgGyp1 essentially hydrolyzes the GTP-bound FgRab1 (activated form) to its corresponding GDP-bound (inactive) form in vitro, suggesting that FgGyp1 is a GTPase-activating protein (GAP) for FgRab1. Finally, FgGyp1 was found to be important for FgSnc1-mediated fusion of secretory vesicles from the Golgi with the plasma membrane in F. graminearum. Put together, these data demonstrate that FgGyp1 functions as a GAP for FgRab1 and is important for vegetative growth, conidiation and virulence, and negatively regulates DON biosynthesis in F. graminearum.


2019 ◽  
Vol 70 (4) ◽  
pp. 495-509 ◽  
Author(s):  
Juliane Rieger ◽  
Carsten Hopperdietzel ◽  
Sabine Kaessmeyer ◽  
Ilka Slosarek ◽  
Sebastian Diecke ◽  
...  

2020 ◽  
Author(s):  
Sylvestre P. J. T. Bachollet ◽  
Cyril Addi ◽  
Jean-Maurice Mallet ◽  
Blaise Dumat

A series of red-emitting and near-infrared fluorogenic protein probes based on push-pull molecular rotor structures was developed. After characterization of their optical properties using Bovine Serum Albumin as a model protein, they were conjugated to a halogenoalkane ligand in order to target the protein self-labeling tag HaloTag. The interaction with HaloTag was investigated in vitro and then the most promising probes were applied to live-cell imaging in wash-free conditions using fluorogenic and chemogenetic targeting of HaloTag fusion proteins.<br>


Sign in / Sign up

Export Citation Format

Share Document