scholarly journals Tetherin Antagonism by HIV-1 Group M Nef Proteins

2016 ◽  
Vol 90 (23) ◽  
pp. 10701-10714 ◽  
Author(s):  
Juan F. Arias ◽  
Marta Colomer-Lluch ◽  
Benjamin von Bredow ◽  
Justin M. Greene ◽  
Julie MacDonald ◽  
...  

ABSTRACTAlthough Nef is the viral gene product used by most simian immunodeficiency viruses to overcome restriction by tetherin, this activity was acquired by the Vpu protein of HIV-1 group M due to the absence of sequences in human tetherin that confer susceptibility to Nef. Thus, it is widely accepted that HIV-1 group M uses Vpu instead of Nef to counteract tetherin. Challenging this paradigm, we identified Nef alleles of HIV-1 group M isolates with significant activity against human tetherin. These Nef proteins promoted virus release and tetherin downmodulation from the cell surface and, in the context ofvpu-deleted HIV-1 recombinants, enhanced virus replication and resistance to antibody-dependent cell-mediated cytotoxicity (ADCC). Further analysis revealed that the Vpu proteins from several of these viruses lack antitetherin activity, suggesting that under certain circumstances, HIV-1 group M Nef may acquire the ability to counteract tetherin to compensate for the loss of this function by Vpu. These observations illustrate the remarkable plasticity of HIV-1 in overcoming restriction by tetherin and challenge the prevailing view that all HIV-1 group M isolates use Vpu to counteract tetherin.IMPORTANCEMost viruses of HIV-1 group M, the main group of HIV-1 responsible for the global AIDS pandemic, use their Vpu proteins to overcome restriction by tetherin (BST-2 or CD317), which is a transmembrane protein that inhibits virus release from infected cells. Here we show that the Nef proteins of certain HIV-1 group M isolates can acquire the ability to counteract tetherin. These results challenge the current paradigm that HIV-1 group M exclusively uses Vpu to counteract tetherin and underscore the importance of tetherin antagonism for efficient viral replication.

2020 ◽  
Author(s):  
Sebastian Giese ◽  
Scott P. Lawrence ◽  
Michela Mazzon ◽  
Bernadien M. Nijmeijer ◽  
Mark Marsh

AbstractBst-2/tetherin inhibits the release of numerous enveloped viruses by physically attaching nascent particles to infected cells during the process of viral budding from the cell surface. Tetherin also restricts human immunodeficiency viruses (HIV), and pandemic main (M) group HIV-1s are thought to exclusively rely on their Vpu proteins to overcome tetherin-mediated restriction of virus release. However, at least one M group HIV-1 strain, the macrophage-tropic primary AD8 isolate, is unable to express vpu due to a mutation in its translation initiation codon. Here, using primary monocyte-derived macrophages (MDMs), we show that AD8 was able to use its Nef protein to compensate for the absence of Vpu and restore virus release to wild type levels. We demonstrate that HIV-1 AD8 Nef reduces endogenous tetherin levels from the cell surface, physically separating it from the site of viral budding and thus preventing HIV retention. Mechanistically, AD8 Nef enhances l-tetherin internalisation, leading to perinuclear accumulation of the restriction factor. Finally, we show that Nef proteins from other HIV strains also display varying degrees of tetherin antagonism. Overall, this is the first report showing that M group HIV-1s can use an accessory protein other than Vpu to antagonise human tetherin.


Viruses ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 459 ◽  
Author(s):  
Sebastian Giese ◽  
Scott P. Lawrence ◽  
Michela Mazzon ◽  
Bernadien M. Nijmeijer ◽  
Mark Marsh

Bone Marrow Stromal Cell Antigen 2 (BST-2)/tetherin inhibits the release of numerous enveloped viruses by physically tethering nascent particles to infected cells during the process of viral budding from the cell surface. Tetherin also restricts human immunodeficiency virus (HIV), and pandemic main (M) group HIV type 1s (HIV-1s) are thought to rely exclusively on their Vpu proteins to overcome tetherin-mediated restriction of virus release. However, at least one M group HIV-1 strain, the macrophage-tropic primary AD8 isolate, is unable to express Vpu due to a mutation in its translation initiation codon. Here, using primary monocyte-derived macrophages (MDMs), we show that AD8 Nef protein can compensate for the absence of Vpu and restore virus release to wild type levels. We demonstrate that HIV-1 AD8 Nef reduces endogenous cell surface tetherin levels, physically separating it from the site of viral budding, thus preventing HIV retention. Mechanistically, AD8 Nef enhances internalisation of the long isoform of human tetherin, leading to perinuclear accumulation of the restriction factor. Finally, we show that Nef proteins from other HIV strains also display varying degrees of tetherin antagonism. Overall, we show that M group HIV-1s can use an accessory protein other than Vpu to antagonise human tetherin.


mBio ◽  
2016 ◽  
Vol 7 (4) ◽  
Author(s):  
Dorota Kmiec ◽  
Shilpa S. Iyer ◽  
Christina M. Stürzel ◽  
Daniel Sauter ◽  
Beatrice H. Hahn ◽  
...  

ABSTRACTHuman immunodeficiency virus type 1 (HIV-1) groups M, N, O, and P are the result of independent zoonotic transmissions of simian immunodeficiency viruses (SIVs) infecting great apes in Africa. Among these, only Vpu proteins of pandemic HIV-1 group M strains evolved potent activity against the restriction factor tetherin, which inhibits virus release from infected cells. Thus, effective Vpu-mediated tetherin antagonism may have been a prerequisite for the global spread of HIV-1. To determine whether this particular function enhances primary HIV-1 replication and interferon resistance, we introduced mutations into thevpugenes of HIV-1 group M and N strains to specifically disrupt their ability to antagonize tetherin, but not other Vpu functions, such as degradation of CD4, down-modulation of CD1d and NTB-A, and suppression of NF-κB activity. Lack of particular human-specific adaptations reduced the ability of HIV-1 group M Vpu proteins to enhance virus production and release from primary CD4+T cells at high levels of type I interferon (IFN) from about 5-fold to 2-fold. Interestingly, transmitted founder HIV-1 strains exhibited higher virion release capacity than chronic control HIV-1 strains irrespective of Vpu function, and group M viruses produced higher levels of cell-free virions than an N group HIV-1 strain. Thus, efficient virus release from infected cells seems to play an important role in the spread of HIV-1 in the human population and requires a fully functional Vpu protein that counteracts human tetherin.IMPORTANCEUnderstanding which human-specific adaptations allowed HIV-1 to cause the AIDS pandemic is of great importance. One feature that distinguishes pandemic HIV-1 group M strains from nonpandemic or rare group O, N, and P viruses is the acquisition of mutations in the accessory Vpu protein that confer potent activity against human tetherin. Adaptation was required because human tetherin has a deletion that renders it resistant to the Nef protein used by the SIV precursor of HIV-1 to antagonize this antiviral factor. It has been suggested that these adaptations in Vpu were critical for the effective spread of HIV-1 M strains, but direct evidence has been lacking. Here, we show that these changes in Vpu significantly enhance virus replication and release in human CD4+T cells, particularly in the presence of IFN, thus supporting an important role in the spread of pandemic HIV-1.


2010 ◽  
Vol 84 (24) ◽  
pp. 12958-12970 ◽  
Author(s):  
Raphaël Vigan ◽  
Stuart J. D. Neil

ABSTRACT Tetherin (BST2/CD317) potently restricts the particle release of human immunodeficiency virus type 1 (HIV-1) mutants defective in the accessory gene vpu. Vpu antagonizes tetherin activity and induces its cell surface downregulation and degradation in a manner dependent on the transmembrane (TM) domains of both proteins. We have carried out extensive mutagenesis of the HIV-1 NL4.3 Vpu TM domain to identify three amino acid positions, A14, W22, and, to a lesser extent, A18, that are required for tetherin antagonism. Despite the mutants localizing indistinguishably from the wild-type (wt) protein and maintaining the ability to multimerize, mutation of these positions rendered Vpu incapable of coimmunoprecipitating tetherin or mediating its cell surface downregulation. Interestingly, these amino acid positions are predicted to form one face of the Vpu transmembrane alpha helix and therefore potentially contribute to an interacting surface with the transmembrane domain of tetherin either directly or by modulating the conformation of Vpu oligomers. While the equivalent of W22 is invariant in HIV-1/SIVcpz Vpu proteins, the positions of A14 and A18 are highly conserved among Vpu alleles from HIV-1 groups M and N, but not those from group O or SIVcpz that lack human tetherin (huTetherin)-antagonizing activity, suggesting that they may have contributed to the adaption of HIV-1 to human tetherin.


2016 ◽  
Vol 90 (13) ◽  
pp. 6127-6139 ◽  
Author(s):  
Benjamin von Bredow ◽  
Juan F. Arias ◽  
Lisa N. Heyer ◽  
Brian Moldt ◽  
Khoa Le ◽  
...  

ABSTRACTAlthough antibodies to the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein have been studied extensively for their ability to block viral infectivity, little data are currently available on nonneutralizing functions of these antibodies, such as their ability to eliminate virus-infected cells by antibody-dependent cell-mediated cytotoxicity (ADCC). HIV-1 Env-specific antibodies of diverse specificities, including potent broadly neutralizing and nonneutralizing antibodies, were therefore tested for ADCC against cells infected with a lab-adapted HIV-1 isolate (HIV-1NL4-3), a primary HIV-1 isolate (HIV-1JR-FL), and a simian-human immunodeficiency virus (SHIV) adapted for pathogenic infection of rhesus macaques (SHIVAD8-EO). In accordance with the sensitivity of these viruses to neutralization, HIV-1NL4-3-infected cells were considerably more sensitive to ADCC, both in terms of the number of antibodies and magnitude of responses, than cells infected with HIV-1JR-FLor SHIVAD8-EO. ADCC activity generally correlated with antibody binding to Env on the surfaces of virus-infected cells and with viral neutralization; however, neutralization was not always predictive of ADCC, as instances of ADCC in the absence of detectable neutralization, and vice versa, were observed. These results reveal incomplete overlap in the specificities of antibodies that mediate these antiviral activities and provide insights into the relationship between ADCC and neutralization important for the development of antibody-based vaccines and therapies for combating HIV-1 infection.IMPORTANCEThis study provides fundamental insights into the relationship between antibody-dependent cell-mediated cytotoxicity (ADCC) and virus neutralization that may help to guide the development of antibody-based vaccines and immunotherapies for the prevention and treatment of HIV-1 infection.


2015 ◽  
Vol 89 (18) ◽  
pp. 9631-9638 ◽  
Author(s):  
Victoria E. K. Walker-Sperling ◽  
Valerie J. Cohen ◽  
Patrick M. Tarwater ◽  
Joel N. Blankson

ABSTRACTThe “shock and kill” model of human immunodeficiency virus type 1 (HIV-1) eradication involves the induction of transcription of HIV-1 genes in latently infected CD4+T cells, followed by the elimination of these infected CD4+T cells by CD8+T cells or other effector cells. CD8+T cells may also be needed to control the spread of new infection if residual infected cells are present at the time combination antiretroviral therapy (cART) is discontinued. In order to determine the time frame needed for CD8+T cells to effectively prevent the spread of HIV-1 infection, we examined the kinetics of HIV transcription and virus release in latently infected cells reactivatedex vivo. Isolated resting, primary CD4+T cells from HIV-positive (HIV+) subjects on suppressive regimens were found to upregulate cell-associated HIV-1 mRNA within 1 h of stimulation and produce extracellular virus as early as 6 h poststimulation. In spite of the rapid kinetics of virus production, we show that CD8+T cells from 2 out of 4 viremic controllers were capable of effectively eliminating reactivated autologous CD4+cells that upregulate cell-associated HIV-1 mRNA. The results have implications for devising strategies to prevent rebound viremia due to reactivation of rare latently infected cells that persist after potentially curative therapy.IMPORTANCEA prominent HIV-1 cure strategy termed “shock and kill” involves the induction of HIV-1 transcription in latently infected CD4+T cells with the goal of elimination of these cells by either the cytotoxic T lymphocyte response or other immune cell subsets. However, the cytotoxic T cell response may also be required after curative treatment if residual latently infected cells remain. The kinetics of HIV-1 reactivation indicate rapid upregulation of cell-associated HIV-1 mRNA and a 5-h window between transcription and virus release. Thus, HIV-specific CD8+T cell responses likely have a very short time frame to eliminate residual latently infected CD4+T cells that become reactivated after discontinuation of antiretroviral therapy following potentially curative treatment strategies.


2012 ◽  
Vol 86 (22) ◽  
pp. 12039-12052 ◽  
Author(s):  
M. D. Alpert ◽  
L. N. Heyer ◽  
D. E. J. Williams ◽  
J. D. Harvey ◽  
T. Greenough ◽  
...  

2015 ◽  
Vol 89 (20) ◽  
pp. 10648-10655 ◽  
Author(s):  
Benjamin von Bredow ◽  
Juan F. Arias ◽  
Lisa N. Heyer ◽  
Matthew R. Gardner ◽  
Michael Farzan ◽  
...  

ABSTRACTThe cytoplasmic tails of human and simian immunodeficiency virus (HIV and SIV, respectively) envelope glycoproteins contain a highly conserved, membrane-proximal endocytosis motif that prevents the accumulation of Env on the surface of infected cells prior to virus assembly. Using an assay designed to measure the killing of virus-infected cells by antibody-dependent cell-mediated cytotoxicity (ADCC), we show that substitutions in this motif increase the susceptibility of HIV-1- and SIV-infected cells to ADCC in a manner that directly correlates with elevated Env levels on the surface of virus-infected cells. In the case of HIV-1, this effect is additive with a deletion invpurecently shown to enhance the susceptibility of HIV-1-infected cells to ADCC as a result of tetherin-mediated retention of budding virions on the cell surface. These results reveal a previously unappreciated role for the membrane-proximal endocytosis motif of gp41 in protecting HIV-1- and SIV-infected cells from antibody responses by regulating the amount of Env present on the cell surface.IMPORTANCEThis study reveals an unappreciated role for the membrane-proximal endocytosis motif of gp41 in protecting HIV-1- and SIV-infected cells from elimination by Env-specific antibodies. Thus, strategies designed to interfere with this mechanism of Env internalization may improve the efficacy of antibody-based vaccines and antiretroviral therapies designed to enhance the immunological control of HIV-1 replication in chronically infected individuals.


2015 ◽  
Vol 112 (20) ◽  
pp. E2687-E2694 ◽  
Author(s):  
Jonathan Richard ◽  
Maxime Veillette ◽  
Nathalie Brassard ◽  
Shilpa S. Iyer ◽  
Michel Roger ◽  
...  

HIV-1-infected cells presenting envelope glycoproteins (Env) in the CD4-bound conformation on their surface are preferentially targeted by antibody-dependent cell-mediated cytotoxicity (ADCC). HIV-1 has evolved a sophisticated mechanism to avoid exposure of ADCC-mediating Env epitopes by down-regulating CD4 and by limiting the overall amount of Env at the cell surface. Here we report that small-molecule CD4-mimetic compounds induce the CD4-bound conformation of Env, and thereby sensitize cells infected with primary HIV-1 isolates to ADCC mediated by antibodies present in sera, cervicovaginal lavages, and breast milk from HIV-1-infected individuals. Importantly, we identified one CD4 mimetic with the capacity to sensitize endogenously infected ex vivo-amplified primary CD4 T cells to ADCC killing mediated by autologous sera and effector cells. Thus, CD4 mimetics hold the promise of therapeutic utility in preventing and controlling HIV-1 infection.


2019 ◽  
Vol 93 (21) ◽  
Author(s):  
Yvonne Affram ◽  
Juan C. Zapata ◽  
Zahra Gholizadeh ◽  
William D. Tolbert ◽  
Wei Zhou ◽  
...  

ABSTRACT The negative strand of HIV-1 encodes a highly hydrophobic antisense protein (ASP) with no known homologs. The presence of humoral and cellular immune responses to ASP in HIV-1 patients indicates that ASP is expressed in vivo, but its role in HIV-1 replication remains unknown. We investigated ASP expression in multiple chronically infected myeloid and lymphoid cell lines using an anti-ASP monoclonal antibody (324.6) in combination with flow cytometry and microscopy approaches. At baseline and in the absence of stimuli, ASP shows polarized subnuclear distribution, preferentially in areas with low content of suppressive epigenetic marks. However, following treatment with phorbol 12-myristate 13-acetate (PMA), ASP translocates to the cytoplasm and is detectable on the cell surface, even in the absence of membrane permeabilization, indicating that 324.6 recognizes an ASP epitope that is exposed extracellularly. Further, surface staining with 324.6 and anti-gp120 antibodies showed that ASP and gp120 colocalize, suggesting that ASP might become incorporated in the membranes of budding virions. Indeed, fluorescence correlation spectroscopy studies showed binding of 324.6 to cell-free HIV-1 particles. Moreover, 324.6 was able to capture and retain HIV-1 virions with efficiency similar to that of the anti-gp120 antibody VRC01. Our studies indicate that ASP is an integral protein of the plasma membranes of chronically infected cells stimulated with PMA, and upon viral budding, ASP becomes a structural protein of the HIV-1 envelope. These results may provide leads to investigate the possible role of ASP in the virus replication cycle and suggest that ASP may represent a new therapeutic or vaccine target. IMPORTANCE The HIV-1 genome contains a gene expressed in the opposite, or antisense, direction to all other genes. The protein product of this antisense gene, called ASP, is poorly characterized, and its role in viral replication remains unknown. We provide evidence that the antisense protein, ASP, of HIV-1 is found within the cell nucleus in unstimulated cells. In addition, we show that after PMA treatment, ASP exits the nucleus and localizes on the cell membrane. Moreover, we demonstrate that ASP is present on the surfaces of viral particles. Altogether, our studies identify ASP as a new structural component of HIV-1 and show that ASP is an accessory protein that promotes viral replication. The presence of ASP on the surfaces of both infected cells and viral particles might be exploited therapeutically.


Sign in / Sign up

Export Citation Format

Share Document