scholarly journals The Epstein-Barr Virus-Encoded LMP-1 Oncoprotein Negatively Affects Tyk2 Phosphorylation and Interferon Signaling in Human B Cells

2006 ◽  
Vol 80 (23) ◽  
pp. 11638-11650 ◽  
Author(s):  
Timothy R. Geiger ◽  
Jennifer M. Martin

ABSTRACT Epstein-Barr virus (EBV) establishes a persistent infection in the human host and is associated with a variety of human cancers. Persistent infection results from a balance between the host immune response and viral immune evasion mechanisms. EBV infection is controlled initially by the innate immune response and later by T-cell-mediated adaptive immunity. EBV has evolved mechanisms to evade the host immune response so that it can persist for the lifetime of the host. Latent membrane protein 1 (LMP-1) is the EBV oncoprotein essential for B-cell immortalization by EBV. We show here that LMP-1 interacts with Tyk2, a signaling intermediate in the alpha interferon (IFN-α) signaling pathway, via a previously uncharacterized LMP-1 signaling domain. LMP-1 prevents Tyk2 phosphorylation and inhibits IFN-α-stimulated STAT2 nuclear translocation and interferon-stimulated response element transcriptional activity. Long-term culture of EBV+ lymphoblastoid cells in IFN-α is associated with outgrowth of a population expressing elevated LMP-1 protein levels, suggesting that cells expressing higher levels of LMP-1 survive the antiproliferative selective pressure imposed by IFN-α. These results show that LMP-1 can protect EBV+ cells from the IFN-α-stimulated antiviral/antiproliferative response and suggest that chronic IFN-α treatment may encourage the outgrowth of cells expressing elevated, and therefore potentially oncogenic, LMP-1 levels in EBV+ individuals.

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
David H. Dreyfus

Epstein-Barr virus, a ubiquitous human herpesvirus, is associated through epidemiologic evidence with common autoimmune syndromes and cancers. However, specific genetic mechanisms of pathogenesis have been difficult to identify. In this review, the author summarizes evidence that recently discovered noncoding RNAs termed microRNA encoded by Epstein-Barr virus BARF (BamHI A right frame) termed BART (BamHI A right transcripts) are modulators of human immune response genes and genome stability in infected and bystander cells. BART expression is apparently regulated by complex feedback loops with the host immune response regulatory NF-κB transcription factors. EBV-encoded BZLF-1 (ZEBRA) protein could also regulate BART since ZEBRA contains a terminal region similar to ankyrin proteins such as IκBαthat regulate host NF-κB. BALF-2 (BamHI A left frame transcript), a viral homologue of the immunoglobulin and T cell receptor gene recombinase RAG-1 (recombination-activating gene-1), may also be coregulated with BART since BALF-2 regulatory sequences are located near the BART locus. Viral-encoded microRNA and viral mRNA transferred to bystander cells through vesicles, defective viral particles, or other mechanisms suggest a new paradigm in which bystander or hit-and-run mechanisms enable the virus to transiently or chronically alter human immune response genes as well as the stability of the human genome.


1999 ◽  
Vol 73 (6) ◽  
pp. 4678-4688 ◽  
Author(s):  
Lindsay C. Spender ◽  
Emma J. Cannell ◽  
Martine Hollyoake ◽  
Barbara Wensing ◽  
Jonathan M. Gawn ◽  
...  

ABSTRACT Infection of human B cells with Epstein-Barr virus (EBV) results in activation of the cell cycle and cell growth. To interpret the mechanisms by which EBV activates the cell, we have assayed many proteins involved in control of the G0 and G1phases of the cell cycle and regulation of apoptosis. In EBV infection most of the changes, including the early induction of cyclin D2, are dependent on expression of EBV genes, but an alteration in the E2F-4 profile was partly independent of viral gene expression, presumably occurring in response to signal transduction activated when the virus binds to its receptor, CD21. By comparing the expression of genes controlling apoptosis, including those encoding several members of the BCL-2 family of proteins, the known relative resistance of EBV-immortalized B-cell lines to apoptosis induced by low serum was found to correlate with expression of both BCL-2 and A20. A20 can be regulated by the NF-κB transcription factor, which is known to be activated by the EBV LMP-1 protein. Quantitative assays demonstrated a direct temporal relationship between LMP-1 protein levels and active NF-κB during the time course of infection.


Oncogene ◽  
2009 ◽  
Vol 29 (4) ◽  
pp. 503-515 ◽  
Author(s):  
S Lacoste ◽  
E Wiechec ◽  
A G dos Santos Silva ◽  
A Guffei ◽  
G Williams ◽  
...  

2017 ◽  
Vol 9 (6) ◽  
pp. 574-586 ◽  
Author(s):  
Yuanjun Lu ◽  
Zailong Qin ◽  
Jia Wang ◽  
Xiang Zheng ◽  
Jianhong Lu ◽  
...  

Recognition of viral pathogen-associated molecular patterns by pattern recognition receptors (PRRs) is the first step in the initiation of a host innate immune response. As a PRR, RIG-I detects either viral RNA or replication transcripts. Avoiding RIG-I recognition is a strategy employed by viruses for immune evasion. Epstein-Barr virus (EBV) infects the majority of the human population worldwide. During the latent infection period there are only a few EBV proteins expressed, whereas EBV-encoded microRNAs, such as BART microRNAs, are highly expressed. BART microRNAs regulate both EBV and the host's gene expression, modulating virus proliferation and the immune response. Here, through gene expression profiling, we found that EBV miR-BART6-3ps inhibited genes of RIG-I-like receptor signaling and the type I interferon (IFN) response. We demonstrated that miR-BART6-3p rather than other BARTs specifically suppressed RIG-I-like receptor signaling-mediated IFN-β production. RNA-seq was used to analyze the global transcriptome change upon EBV infection and miR-BART6-3p mimics transfection, which revealed that EBV infection-triggered immune response signaling can be repressed by miR-BART6-3p overexpression. Furthermore, miR-BART6-3p inhibited the EBV-triggered IFN-β response and facilitated EBV infection through targeting the 3′UTR of RIG-I mRNA. These findings provide new insights into the mechanism underlying the strategies employed by EBV to evade immune surveillance.


2001 ◽  
Vol 100 (2) ◽  
pp. 166-170 ◽  
Author(s):  
Changuo Chen ◽  
Thomas D. Johnston ◽  
K.Sudhakar Reddy ◽  
J.Clint Merrick ◽  
Michael Mastrangelo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document