scholarly journals Analysis of Coronavirus Temperature-Sensitive Mutants Reveals an Interplay between the Macrodomain and Papain-Like Protease Impacting Replication and Pathogenesis

2019 ◽  
Vol 93 (12) ◽  
Author(s):  
Xufang Deng ◽  
Robert C. Mettelman ◽  
Amornrat O’Brien ◽  
John A. Thompson ◽  
Timothy E. O’Brien ◽  
...  

ABSTRACTAnalysis of temperature-sensitive (ts) mutant viruses is a classic method allowing researchers to identify genetic loci involved in viral replication and pathogenesis. Here, we report genetic analysis of a ts strain of mouse hepatitis virus (MHV), tsNC11, focusing on the role of mutations in the macrodomain (MAC) and the papain-like protease 2 (PLP2) domain of nonstructural protein 3 (nsp3), a component of the viral replication complex. Using MHV reverse genetics, we generated a series of mutant viruses to define the contributions of macrodomain- and PLP2-specific mutations to the ts phenotype. Viral replication kinetics and efficiency-of-plating analysis performed at permissive and nonpermissive temperatures revealed that changes in the macrodomain alone were both necessary and sufficient for the ts phenotype. Interestingly, mutations in the PLP2 domain were not responsible for the temperature sensitivity but did reduce the frequency of reversion of macrodomain mutants. Coimmunoprecipitation studies are consistent with an interaction between the macrodomain and PLP2. Expression studies of the macrodomain-PLP2 portion of nsp3 indicate that the ts mutations enhance proteasome-mediated degradation of the protein. Furthermore, we found that during virus infection, the replicase proteins containing the MAC and PLP2 mutations were more rapidly degraded at the nonpermissive temperature than were the wild-type proteins. Importantly, we show that the macrodomain and PLP2 mutant viruses trigger production of type I interferonin vitroand are attenuated in mice, further highlighting the importance of the macrodomain-PLP2 interplay in viral pathogenesis.IMPORTANCECoronaviruses (CoVs) are emerging human and veterinary pathogens with pandemic potential. Despite the established and predicted threat these viruses pose to human health, there are currently no approved countermeasures to control infections with these viruses in humans. Viral macrodomains, enzymes that remove posttranslational ADP-ribosylation of proteins, and viral multifunctional papain-like proteases, enzymes that cleave polyproteins and remove polyubiquitin chains via deubiquitinating activity, are two important virulence factors. Here, we reveal an unanticipated interplay between the macrodomain and the PLP2 domain that is important for replication and antagonizing the host innate immune response. Targeting the interaction of these enzymes may provide new therapeutic opportunities to treat CoV disease.

2016 ◽  
Vol 90 (16) ◽  
pp. 7248-7256 ◽  
Author(s):  
James Brett Case ◽  
Alison W. Ashbrook ◽  
Terence S. Dermody ◽  
Mark R. Denison

ABSTRACTEukaryotic mRNAs possess a methylated 5′-guanosine cap that is required for RNA stability, efficient translation, and protection from cell-intrinsic defenses. Many viruses use 5′ caps or other mechanisms to mimic a cap structure to limit detection of viral RNAs by intracellular innate sensors and to direct efficient translation of viral proteins. The coronavirus (CoV) nonstructural protein 14 (nsp14) is a multifunctional protein with N7-methyltransferase (N7-MTase) activity. The highly conservedS-adenosyl-l-methionine (SAM)-binding residues of the DxG motif are required for nsp14 N7-MTase activityin vitro. However, the requirement for CoV N7-MTase activity and the importance of the SAM-binding residues during viral replication have not been determined. Here, we engineered mutations in murine hepatitis virus (MHV) nsp14 N7-MTase at residues D330 and G332 and determined the effects of these mutations on viral replication, sensitivity to mutagen, inhibition by type I interferon (IFN), and translation efficiency. Virus encoding a G332A substitution in nsp14 displayed delayed replication kinetics and decreased peak titers relative to wild-type (WT) MHV. In addition, replication of nsp14 G332A virus was diminished following treatment of cells with IFN-β, and nsp14 G332A genomes were translated less efficiently bothin vitroand during viral infection. In contrast, substitution of alanine at MHV nsp14 D330 did not affect viral replication, sensitivity to mutagen, or inhibition by IFN-β compared to WT MHV. Our results demonstrate that the conserved MHV N7-MTase SAM-binding-site residues are not required for MHV viability and suggest that the determinants of CoV N7-MTase activity differin vitroand during virus infection.IMPORTANCEHuman coronaviruses, most notably severe acute respiratory syndrome (SARS)-CoV and Middle East respiratory syndrome (MERS)-CoV, cause severe and lethal human disease. Since specific antiviral therapies are not available for the treatment of human coronavirus infections, it is essential to understand the functions of conserved CoV proteins in viral replication. Here, we show that substitution of alanine at G332 in the N7-MTase domain of nsp14 impairs viral replication, enhances sensitivity to the innate immune response, and reduces viral RNA translation efficiency. Our data support the idea that coronavirus RNA capping could be targeted for development of antiviral therapeutics.


2015 ◽  
Vol 89 (9) ◽  
pp. 4907-4917 ◽  
Author(s):  
Anna M. Mielech ◽  
Xufang Deng ◽  
Yafang Chen ◽  
Eveline Kindler ◽  
Dorthea L. Wheeler ◽  
...  

ABSTRACTUbiquitin-like domains (Ubls) now are recognized as common elements adjacent to viral and cellular proteases; however, their function is unclear. Structural studies of the papain-like protease (PLP) domains of coronaviruses (CoVs) revealed an adjacent Ubl domain in severe acute respiratory syndrome CoV, Middle East respiratory syndrome CoV, and the murine CoV, mouse hepatitis virus (MHV). Here, we tested the effect of altering the Ubl adjacent to PLP2 of MHV on enzyme activity, viral replication, and pathogenesis. Using deletion and substitution approaches, we identified sites within the Ubl domain, residues 785 to 787 of nonstructural protein 3, which negatively affect protease activity, and valine residues 785 and 787, which negatively affect deubiquitinating activity. Using reverse genetics, we engineered Ubl mutant viruses and found that AM2 (V787S) and AM3 (V785S) viruses replicate efficiently at 37°C but generate smaller plaques than wild-type (WT) virus, and AM2 is defective for replication at higher temperatures. To evaluate the effect of the mutation on protease activity, we purified WT and Ubl mutant PLP2 and found that the proteases exhibit similar specific activities at 25°C. However, the thermal stability of the Ubl mutant PLP2 was significantly reduced at 30°C, thereby reducing the total enzymatic activity. To determine if the destabilizing mutation affects viral pathogenesis, we infected C57BL/6 mice with WT or AM2 virus and found that the mutant virus is highly attenuated, yet it replicates sufficiently to elicit protective immunity. These studies revealed that modulating the Ubl domain adjacent to the PLP reduces protease stability and viral pathogenesis, revealing a novel approach to coronavirus attenuation.IMPORTANCEIntroducing mutations into a protein or virus can have either direct or indirect effects on function. We asked if changes in the Ubl domain, a conserved domain adjacent to the coronavirus papain-like protease, altered the viral protease activity or affected viral replication or pathogenesis. Our studies using purified wild-type and Ubl mutant proteases revealed that mutations in the viral Ubl domain destabilize and inactivate the adjacent viral protease. Furthermore, we show that a CoV encoding the mutant Ubl domain is unable to replicate at high temperature or cause lethal disease in mice. Our results identify the coronavirus Ubl domain as a novel modulator of viral protease stability and reveal manipulating the Ubl domain as a new approach for attenuating coronavirus replication and pathogenesis.


2010 ◽  
Vol 84 (19) ◽  
pp. 10148-10158 ◽  
Author(s):  
Helen L. Stokes ◽  
Surendranath Baliji ◽  
Chang Guo Hui ◽  
Stanley G. Sawicki ◽  
Susan C. Baker ◽  
...  

ABSTRACT We report an RNA-negative, temperature-sensitive (ts) mutant of Murine hepatitis virus, Bristol ts31 (MHV-Brts31), that defines a new complementation group within the MHV replicase gene locus. MHV-Brts31 has near-normal levels of RNA synthesis at the permissive temperature of 33°C but is unable to synthesize viral RNA when the infection is initiated and maintained at the nonpermissive temperature of 39.5°C. Sequence analysis of MHV-Brts31 RNA indicated that a single G-to-A transition at codon 1307 in open reading frame 1a, which results in a replacement of methionine-475 with isoleucine in nonstructural protein 3 (nsp3), was responsible for the ts phenotype. This conclusion was confirmed using a vaccinia virus-based reverse genetics system to produce a recombinant virus, Bristol tsc31 (MHV-Brtsc31), which has the same RNA-negative ts phenotype and complementation profile as those of MHV-Brts31. The analysis of protein synthesis in virus-infected cells showed that, at the nonpermissive temperature, MHV-Brtsc31 was not able to proteolytically process either p150, the precursor polypeptide of the replicase nonstructural proteins nsp4 to nsp10, or the replicase polyprotein pp1ab to produce nsp12. The processing of replicase polyprotein pp1a in the region of nsp1 to nsp3 was not affected. Transmission electron microscopy showed that, compared to revertant virus, the number of double-membrane vesicles in MHV-Brts31-infected cells is reduced at the nonpermissive temperature. These results identify a new cistron in the MHV replicase gene locus and show that nsp3 has an essential role in the assembly of a functional MHV replication-transcription complex.


2009 ◽  
Vol 83 (18) ◽  
pp. 9449-9463 ◽  
Author(s):  
Jun Han ◽  
Mark S. Rutherford ◽  
Kay S. Faaberg

ABSTRACT The N terminus of the replicase nonstructural protein 2 (nsp2) of porcine reproductive and respiratory syndrome virus (PRRSV) contains a putative cysteine protease domain (PL2). Previously, we demonstrated that deletion of either the PL2 core domain (amino acids [aa] 47 to 180) or the immediate downstream region (aa 181 to 323) is lethal to the virus. In this study, the PL2 domain was found to encode an active enzyme that mediates efficient processing of nsp2-3 in CHO cells. The PL2 protease possessed both trans- and cis-cleavage activities, which were distinguished by individual point mutations in the protease domain. The minimal size required to maintain these two enzymatic activities included nsp2 aa 47 to 240 (Tyr47 to Cys240) and aa 47 to 323 (Tyr47 to Leu323), respectively. Introduction of targeted amino acid mutations in the protease domain confirmed the importance of the putative Cys55- His124 catalytic motif for nsp2/3 proteolysis in vitro, as were three additional conserved cysteine residues (Cys111, Cys142, and Cys147). The conserved aspartic acids (e.g., Asp89) were essential for the PL2 protease trans-cleavage activity. Reverse genetics revealed that the PL2 trans-cleavage activity played an important role in the PRRSV replication cycle in that mutations that impaired the PL2 protease trans function, but not the cis activity, were detrimental to viral viability. Lastly, the potential nsp2/3 cleavage site was probed. Mutations with the largest impact on in vitro cleavage were at or near the G1196|G1197 dipeptide.


2008 ◽  
Vol 205 (8) ◽  
pp. 1929-1938 ◽  
Author(s):  
César Muñoz-Fontela ◽  
Salvador Macip ◽  
Luis Martínez-Sobrido ◽  
Lauren Brown ◽  
Joseph Ashour ◽  
...  

Tumor suppressor p53 is activated by several stimuli, including DNA damage and oncogenic stress. Previous studies (Takaoka, A., S. Hayakawa, H. Yanai, D. Stoiber, H. Negishi, H. Kikuchi, S. Sasaki, K. Imai, T. Shibue, K. Honda, and T. Taniguchi. 2003. Nature. 424:516–523) have shown that p53 is also induced in response to viral infections as a downstream transcriptional target of type I interferon (IFN) signaling. Moreover, many viruses, including SV40, human papillomavirus, Kaposi's sarcoma herpesvirus, adenoviruses, and even RNA viruses such as polioviruses, have evolved mechanisms designated to abrogate p53 responses. We describe a novel p53 function in the activation of the IFN pathway. We observed that infected mouse and human cells with functional p53 exhibited markedly decreased viral replication early after infection. This early inhibition of viral replication was mediated both in vitro and in vivo by a p53-dependent enhancement of IFN signaling, specifically the induction of genes containing IFN-stimulated response elements. Of note, p53 also contributed to an increase in IFN release from infected cells. We established that this p53-dependent enhancement of IFN signaling is dependent to a great extent on the ability of p53 to activate the transcription of IFN regulatory factor 9, a central component of the IFN-stimulated gene factor 3 complex. Our results demonstrate that p53 contributes to innate immunity by enhancing IFN-dependent antiviral activity independent of its functions as a proapoptotic and tumor suppressor gene.


2018 ◽  
Vol 92 (14) ◽  
Author(s):  
Vu Thuy Khanh Le-Trilling ◽  
Kerstin Wohlgemuth ◽  
Meike U. Rückborn ◽  
Andreja Jagnjic ◽  
Fabienne Maaßen ◽  
...  

ABSTRACTA pathogen encounter induces interferons, which signal via Janus kinases and STAT transcription factors to establish an antiviral state. However, the host and pathogens are situated in a continuous arms race which shapes host evolution toward optimized immune responses and the pathogens toward enhanced immune-evasive properties. Mouse cytomegalovirus (MCMV) counteracts interferon responses by pM27-mediated degradation of STAT2, which directly affects the signaling of type I as well as type III interferons. Using MCMV mutants lackingM27and mice lacking STAT2, we studied the opposing relationship between antiviral activities and viral antagonism in a natural host-pathogen pairin vitroandin vivo. In contrast to wild-type (wt) MCMV, ΔM27 mutant MCMV was efficiently cleared from all organs within a few days in BALB/c, C57BL/6, and 129 mice, highlighting the general importance of STAT2 antagonism for MCMV replication. Despite this effective and relevant STAT2 antagonism, wt and STAT2-deficient mice exhibited fundamentally different susceptibilities to MCMV infections. MCMV replication was increased in all assessed organs (e.g., liver, spleen, lungs, and salivary glands) of STAT2-deficient mice, resulting in mortality during the first week after infection. Taken together, the results of our study reveal the importance of cytomegaloviral interferon antagonism for viral replication as well as a pivotal role of the remaining STAT2 activity for host survival. This mutual influence establishes a stable evolutionary standoff situation with fatal consequences when the equilibrium is disturbed.IMPORTANCEThe host limits viral replication by the use of interferons (IFNs), which signal via STAT proteins. Several viruses evolved antagonists targeting STATs to antagonize IFNs (e.g., cytomegaloviruses, Zika virus, dengue virus, and several paramyxoviruses). We analyzed infections caused by MCMV expressing or lacking the STAT2 antagonist pM27 in STAT2-deficient and control mice to evaluate its importance for the host and the virusin vitroandin vivo. The inability to counteract STAT2 directly translates into exaggerated IFN susceptibilityin vitroand pronounced attenuationin vivo. Thus, the antiviral activity mediated by IFNs via STAT2-dependent signaling drove the development of a potent MCMV-encoded STAT2 antagonist which became indispensable for efficient virus replication and spread to organs required for dissemination. Despite this clear impact of viral STAT2 antagonism, the host critically required the remaining STAT2 activity to prevent overt disease and mortality upon MCMV infection. Our findings highlight a remarkably delicate balance between host and virus.


2008 ◽  
Vol 82 (21) ◽  
pp. 10580-10590 ◽  
Author(s):  
Rong Hai ◽  
Luis Martínez-Sobrido ◽  
Kathryn A. Fraser ◽  
Juan Ayllon ◽  
Adolfo García-Sastre ◽  
...  

ABSTRACT Type B influenza viruses can cause substantial morbidity and mortality in the population, and vaccination remains by far the best means of protection against infections with these viruses. Here, we report the construction of mutant influenza B viruses for potential use as improved live-virus vaccine candidates. Employing reverse genetics, we altered the NS1 gene, which encodes a type I interferon (IFN) antagonist. The resulting NS1 mutant viruses induced IFN and, as a consequence, were found to be attenuated in vitro and in vivo. The absence of pathogenicity of the NS1 mutants in both BALB/c and C57BL/6 PKR−/− mice was confirmed. We also provide evidence that influenza B virus NS1 mutants induce a self-adjuvanted immune response and confer effective protection against challenge with both homologous and heterologous B virus strains in mice.


2007 ◽  
Vol 18 (8) ◽  
pp. 2893-2903 ◽  
Author(s):  
Sarah L. Barker ◽  
Linda Lee ◽  
B. Daniel Pierce ◽  
Lymarie Maldonado-Báez ◽  
David G. Drubin ◽  
...  

The yeast endocytic scaffold Pan1 contains an uncharacterized proline-rich domain (PRD) at its carboxy (C)-terminus. We report that the pan1-20 temperature-sensitive allele has a disrupted PRD due to a frame-shift mutation in the open reading frame of the domain. To reveal redundantly masked functions of the PRD, synthetic genetic array screens with a pan1ΔPRD strain found genetic interactions with alleles of ACT1, LAS17 and a deletion of SLA1. Through a yeast two-hybrid screen, the Src homology 3 domains of the type I myosins, Myo3 and Myo5, were identified as binding partners for the C-terminus of Pan1. In vitro and in vivo assays validated this interaction. The relative timing of recruitment of Pan1-green fluorescent protein (GFP) and Myo3/5-red fluorescent protein (RFP) at nascent endocytic sites was revealed by two-color real-time fluorescence microscopy; the type I myosins join Pan1 at cortical patches at a late stage of internalization, preceding the inward movement of Pan1 and its disassembly. In cells lacking the Pan1 PRD, we observed an increased lifetime of Myo5-GFP at the cortex. Finally, Pan1 PRD enhanced the actin polymerization activity of Myo5–Vrp1 complexes in vitro. We propose that Pan1 and the type I myosins interactions promote an actin activity important at a late stage in endocytic internalization.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Xiaoqiong Duan ◽  
Yujuan Guan ◽  
Yujia Li ◽  
Shan Chen ◽  
Shilin Li ◽  
...  

Calcitriol, the bioactive metabolite of vitamin D, was reported to inhibit HCV production in a synergistic fashion with interferon, a treatmentin vitro. Our previous study established that miR-130a inhibits HCV replication by restoring the host innate immune response. We aimed to determine whether there is additive inhibitory effect of calcitriol and miR-130a on HCV replication. Here we showed that calcitriol potentiates the anti-HCV effect of miR-130a in both Con1b replicon and J6/JFH1 culture systems. Intriguingly, this potentiating effect of calcitriol on miR-130a was not through upregulating the expression of cellular miR-130a or through increasing the miR-130a-mediated IFNα/βproduction. All these findings may contribute to the development of novel anti-HCV therapeutic strategies although the antiviral mechanism needs to be further investigated.


2006 ◽  
Vol 80 (13) ◽  
pp. 6430-6440 ◽  
Author(s):  
Amy L. Hartman ◽  
Jason E. Dover ◽  
Jonathan S. Towner ◽  
Stuart T. Nichol

ABSTRACT The VP35 protein of Zaire Ebola virus is an essential component of the viral RNA polymerase complex and also functions to antagonize the cellular type I interferon (IFN) response by blocking activation of the transcription factor IRF-3. We previously mapped the IRF-3 inhibitory domain within the C terminus of VP35. In the present study, we show that mutations that disrupt the IRF-3 inhibitory function of VP35 do not disrupt viral transcription/replication, suggesting that the two functions of VP35 are separable. Second, using reverse genetics, we successfully recovered recombinant Ebola viruses containing mutations within the IRF-3 inhibitory domain. Importantly, we show that the recombinant viruses were attenuated for growth in cell culture and that they activated IRF-3 and IRF-3-inducible gene expression at levels higher than that for Ebola virus containing wild-type VP35. In the context of Ebola virus pathogenesis, VP35 may function to limit early IFN-β production and other antiviral signals generated from cells at the primary site of infection, thereby slowing down the host's ability to curb virus replication and induce adaptive immunity.


Sign in / Sign up

Export Citation Format

Share Document