antiviral mechanism
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 52)

H-INDEX

21
(FIVE YEARS 5)

2021 ◽  
Vol 14 (12) ◽  
pp. 1236
Author(s):  
Aussara Panya ◽  
Kanyaluck Jantakee ◽  
Suthida Punwong ◽  
Supawadee Thongyim ◽  
Thida Kaewkod ◽  
...  

Traditional Triphala (three fruits), consisting of Phyllanthus emblica, Terminalia chebula, and Terminalia bellirica, presents a broad range of biological activities. However, its ability to inhibit dengue virus (DENV) infection has not been reported yet. Herein, the authors investigated the efficiency of three different Triphala formulations and its individual extract constituents to inhibit DENV infection. Treatment with T. bellirica extract or Triphala formulated with a high ratio of T. bellirica extract showed remarkable efficiency in significantly lowering DENV infection in Vero cells. Their effects were further studied in Huh7 cells, to address its potential ability in human cells. Treatment with 100 μg/mL of T. bellirica extract or Triphala resulted in an approximate 3000-fold or 1000-fold lowering of virus production, respectively. Furthermore, the treatment diminished IL-6 and CXCL-10 expressions, which are the hallmark of the cytokine storm phenomenon in DENV infection. The HPLC profiling demonstrated gallic acid as a major compound, the treatment by which showed its ability to effectively inhibit DENV infection after virus entry. Molecular docking demonstrated that gallic acid was able to interact with DENV NS5 protein, which could be one of Triphala’s antiviral mechanism. This study offers Triphala formulation and its ingredient, T. bellirica extract, as a natural based pharmaceutical to be used in DENV infection treatment.


2021 ◽  
Vol 17 (11) ◽  
pp. e1010070
Author(s):  
Bin-yan Liu ◽  
Xue-jie Yu ◽  
Chuan-min Zhou

Nuclear scaffold attachment factor A (SAFA) is a novel RNA sensor involved in sensing viral RNA in the nucleus and mediating antiviral immunity. Severe fever with thrombocytopenia syndrome virus (SFTSV) is a bunyavirus that causes SFTS with a high fatality rate of up to 30%. It remains elusive whether and how cytoplasmic SFTSV can be sensed by the RNA sensor SAFA. Here, we demonstrated that SAFA was able to detect SFTSV infection and mediate antiviral interferon and inflammatory responses. Transcription and expression levels of SAFA were strikingly upregulated under SFTSV infection. SAFA was retained in the cytoplasm by interaction with SFTSV nucleocapsid protein (NP). Importantly, SFTSV genomic RNA was recognized by cytoplasmic SAFA, which recruited and promoted activation of the STING-TBK1 signaling axis against SFTSV infection. Of note, the nuclear localization signal (NLS) domain of SAFA was important for interaction with SFTSV NP and recognition of SFTSV RNA in the cytoplasm. In conclusion, our study reveals a novel antiviral mechanism in which SAFA functions as a novel cytoplasmic RNA sensor that directly recognizes RNA virus SFTSV and mediates an antiviral response.


2021 ◽  
Vol 102 (10) ◽  
Author(s):  
Miryam Pérez-Cañamás ◽  
Elizabeth Hevia ◽  
Konstantina Katsarou ◽  
Carmen Hernández

In plants, RNA silencing functions as a potent antiviral mechanism. Virus-derived double-stranded RNAs (dsRNAs) trigger this mechanism, being cleaved by Dicer-like (DCL) enzymes into virus small RNAs (vsRNAs). These vsRNAs guide sequence-specific RNA degradation upon their incorporation into an RNA-induced silencing complex (RISC) that contains a slicer of the Argonaute (AGO) family. Host RNA dependent-RNA polymerases, particularly RDR6, strengthen antiviral silencing by generating more dsRNA templates from RISC-cleavage products that, in turn, are converted into secondary vsRNAs by DCLs. Previous work showed that Pelargonium line pattern virus (PLPV) is a very efficient inducer and target of RNA silencing as PLPV-infected Nicotiana benthamiana plants accumulate extraordinarily high amounts of vsRNAs that, strikingly, are independent of RDR6 activity. Several scenarios may explain these observations including a major contribution of dicing versus slicing for defence against PLPV, as the dicing step would not be affected by the RNA silencing suppressor encoded by the virus, a protein that acts via vsRNA sequestration. Taking advantage of the availability of lines of N. benthamiana with DCL or AGO2 functions impaired, here we have tried to get further insights into the components of the silencing machinery that are involved in anti-PLPV-silencing. Results have shown that DCL4 and, to lesser extent, DCL2 contribute to restrict viral infection. Interestingly, AGO2 apparently makes even a higher contribution in the defence against PLPV, extending the number of viruses that are affected by this particular slicer. The data support that both dicing and slicing activities participate in the host race against PLPV.


Marine Drugs ◽  
2021 ◽  
Vol 19 (10) ◽  
pp. 544
Author(s):  
Yue Wang ◽  
Chao Zhang ◽  
Wen-Hong Fang ◽  
Hong-Yu Ma ◽  
Xin-Cang Li

Crustins are cysteine-rich cationic antimicrobial peptides with diverse biological functions including antimicrobial and proteinase inhibitory activities in crustaceans. Although a few crustins reportedly respond to white spot syndrome virus (WSSV) infection, the detailed antiviral mechanisms of crustins remain largely unknown. Our previous research has shown that SpCrus2, from mud crab Scylla paramamosain, is a type II crustin containing a glycine-rich region (GRR) and a cysteine-rich region (CRR). In the present study, we found that SpCrus2 was upregulated in gills after WSSV challenge. Knockdown of SpCrus2 by injecting double-stranded RNA (dsSpCrus2) resulted in remarkably increased virus copies in mud crabs after infection with WSSV. These results suggested that SpCrus2 played a critical role in the antiviral immunity of mud crab. A GST pull-down assay showed that recombinant SpCrus2 interacted specifically with WSSV structural protein VP26, and this result was further confirmed by a co-immunoprecipitation assay with Drosophila S2 cells. As the signature sequence of type II crustin, SpCrus2 GRR is a glycine-rich cationic polypeptide with amphipathic properties. Our study demonstrated that the GRR and CRR of SpCrus2 exhibited binding activities to VP26, with the former displaying more potent binding ability than the latter. Interestingly, pre-incubating WSSV particles with recombinant SpCrus2 (rSpCrus2), rGRR, or rCRR inhibited virus proliferation in vivo; moreover, rSpCrus2 and rGRR possessed similar antiviral abilities, which were much stronger than those of rCRR. These findings indicated that SpCrus2 GRR contributed largely to the antiviral ability of SpCrus2, and that the stronger antiviral ability of GRR might result from its stronger binding activity to the viral structural protein. Overall, this study provided new insights into the antiviral mechanism of SpCrus2 and the development of new antiviral drugs.


2021 ◽  
Vol 22 (19) ◽  
pp. 10346
Author(s):  
Jian He ◽  
Nan-Nan Chen ◽  
Zhi-Min Li ◽  
Yuan-Yuan Wang ◽  
Shao-Ping Weng ◽  
...  

Exosomes are associated with cancer progression, pregnancy, cardiovascular diseases, central nervous system-related diseases, immune responses and viral pathogenicity. However, study on the role of exosomes in the immune response of teleost fish, especially antiviral immunity, is limited. Herein, serum-derived exosomes from mandarin fish were used to investigate the antiviral effect on the exosomes of teleost fish. Exosomes isolated from mandarin fish serum by ultra-centrifugation were internalized by mandarin fish fry cells and were able to inhibit Infectious spleen and kidney necrosis virus (ISKNV) infection. To further investigate the underlying mechanisms of exosomes in inhibiting ISKNV infection, the protein composition of serum-derived exosomes was analyzed by mass spectrometry. It was found that myxovirus resistance 1 (Mx1) was incorporated by exosomes. Furthermore, the mandarin fish Mx1 protein was proven to be transferred into the recipient cells though exosomes. Our results showed that the serum-derived exosomes from mandarin fish could inhibit ISKNV replication, which suggested an underlying mechanism of the exosome antivirus in that it incorporates Mx1 protein and delivery into recipient cells. This study provided evidence for the important antiviral role of exosomes in the immune system of teleost fish.


2021 ◽  
Vol 13 (3) ◽  
pp. 636-644
Author(s):  
Claudio Fenizia ◽  
Salomè Valentina Ibba ◽  
Claudia Vanetti ◽  
Sergio Strizzi ◽  
Jean-François Rossignol ◽  
...  

We previously investigated the role of Nitazoxanide (NTZ), a thiazolide endowed with antiviral and antiparasitic activity, in HIV-1 infection. NTZ treatment in primary isolated PBMCs was able to reduce HIV-1 infection in vitro by inducing the expression of a number of type-I interferon-stimulated genes. Among them, NTZ was able to induce cholesterol-25-hydroxylase (CH25H), which is involved in cholesterol metabolism. In the present study, we wanted to deepen our knowledge about the antiviral mechanism of action of NTZ. Indeed, by inducing CH25H, which catalyzes the formation of 25-hydroxycholesterol from cholesterol, NTZ treatment repressed cholesterol biosynthetic pathways and promoted cholesterol mobilization and efflux from the cell. Such effects were even more pronounced upon stimulation with FLU antigens in combination. It is already well known how lipid metabolism and virus replication are tightly interconnected; thus, it is not surprising that the antiviral immune response employs genes related to cholesterol metabolism. Indeed, NTZ was able to modulate cholesterol metabolism in vitro and, by doing so, enhance the antiviral response. These results give us the chance to speculate about the suitability of NTZ as adjuvant for induction of specific natural immunity. Moreover, the putative application of NTZ to alimentary-related diseases should be investigated.


Author(s):  
Changjun Guo ◽  
Jian He ◽  
Zhi-Min Li ◽  
Yuanyuan Wang ◽  
Chen nan nan ◽  
...  

Exosomes are associated with cancer progression, pregnancy, cardiovascular diseases, central nervous system–related diseases, immune responses and viral pathogenicity. However, study on the role of exosomes in the immune response of teleost fish, especially antiviral immunity, is limited. Herein, serum-derived exosomes from mandarin fish were used to investigate antiviral effect for the exosomes of teleost fish. Exosomes were isolated from mandarin fish serum by ultracentrifugation could internalize into Mandarin fish fry (MFF-1) cells and inhibited Infectious spleen and kidney necrosis virus (ISKNV) infection. To further investigated the underlying mechanisms of exosomes in inhibiting ISKNV infection. The protein composition of serum-derived exosomes was by analysis mass spectrometry and found that myxovirus resistance 1 (Mx1) was incorporated in the exosomes. Furthermore, the scMx1 protein was proved transferred to the recipient cells though the exosomes. Our results found that the serum-derived exosomes from mandarin fish could inhibit ISKNV replication and suggested an underlying mechanism of the serum-derived exosomes antivirus is that serum-derived exosomes incorporation of the Mx1 protein into exosomes and delivery into recipient cells. This study provided an evidence for the important antiviral role of exosomes in the immune system of teleost fish.


Sign in / Sign up

Export Citation Format

Share Document