scholarly journals In chronic infection, HIV gag-specific CD4+ T cell receptor diversity is higher than CD8+ T cell receptor diversity and is associated with less HIV quasispecies diversity

2021 ◽  
Author(s):  
Mark A Pilkinton ◽  
Wyatt J McDonnell ◽  
Louise Barnett ◽  
Abha Chopra ◽  
Rama Gangula ◽  
...  

Cellular immune responses to Gag correlate with improved HIV viral control. The full extent of cellular immune responses comprise both the number of epitopes recognized by CD4+ and CD8+ T cells, as well as the diversity of the T cell receptor (TCR) repertoire directed against each epitope. The optimal diversity of the responsive TCR repertoire is unclear. Therefore, we evaluated the TCR diversity of CD4+ and CD8+ T cells responding to HIV-1 Gag to determine if TCR diversity correlates with clinical or virologic metrics. Previous studies of TCR repertoires have been limited primarily to CD8+ T cell responses directed against a small number of well-characterized T cell epitopes restricted by specific human leucocyte antigens. We stimulated peripheral blood mononuclear cells from 21chronic HIV-infected individuals overnight with a pool of HIV-1 Gag peptides, followed by sorting of activated CD4+ and CD8+ T cells and TCR deep sequencing. We found Gag-reactive CD8+ T cells to be more oligoclonal, with a few dominant TCRs comprising the bulk of the repertoire, compared to the highly diverse TCR repertoires of Gag-reactive CD4+ T cells. HIV viral sequencing of the same donors revealed that high CD4+ T cell TCR diversity was strongly associated with lower HIV Gag genetic diversity. We conclude that the TCR repertoire of Gag-reactive CD4+ T helper cells display substantial diversity without a clearly dominant circulating TCR clonotype, in contrast to a hierarchy of dominant TCR clonotypes in the Gag-reactive CD8+ T cells, and may serve to limit HIV diversity during chronic infection. IMPORTANCE Human T cells recognize portions of viral proteins bound to host molecules (human leucocyte antigens) on the surface of infected cells. T cells recognize these foreign proteins through their T cell receptors (TCRs), which are formed by the assortment of several available V, D and J genes to create millions of combinations of unique TCRs. We measured the diversity of T cells responding to the HIV Gag protein. We found the CD8+ T cell response is primarily made up of a few dominant unique TCRs whereas the CD4+ T cell subset has a much more diverse repertoire of TCRs. We also found there was less change in the virus sequences in subjects with more diverse TCR repertoires. HIV has a high mutation rate, which allows it to evade the immune response. Our findings describe the characteristics of a virus-specific T cell response that may allow it to limit viral evolution.

2010 ◽  
Vol 208 (1) ◽  
pp. 3-11 ◽  
Author(s):  
Christophe Viret ◽  
Camille Lamare ◽  
Martine Guiraud ◽  
Nicolas Fazilleau ◽  
Agathe Bour ◽  
...  

Thymus-specific serine protease (TSSP) is a novel protease that may contribute to the generation of the peptide repertoire presented by MHC class II molecules in the thymus. Although TSSP deficiency has no quantitative impact on the development of CD4 T cells expressing a polyclonal T cell receptor (TCR) repertoire, the development of CD4 T cells expressing the OTII and Marilyn transgenic TCRs is impaired in TSSP-deficient mice. In this study, we assess the role of TSSP in shaping the functional endogenous polyclonal CD4 T cell repertoire by analyzing the response of TSSP-deficient mice to several protein antigens (Ags). Although TSSP-deficient mice responded normally to most of the Ags tested, they responded poorly to hen egg lysozyme (HEL). The impaired CD4 T cell response of TSSP-deficient mice to HEL correlated with significant alteration of the dominant TCR-β chain repertoire expressed by HEL-specific CD4 T cells, suggesting that TSSP is necessary for the intrathymic development of cells expressing these TCRs. Thus, TSSP contributes to the diversification of the functional endogenous CD4 T cell TCR repertoire in the thymus.


Blood ◽  
2008 ◽  
Vol 111 (4) ◽  
pp. 2053-2061 ◽  
Author(s):  
Laura Crompton ◽  
Naeem Khan ◽  
Rajiv Khanna ◽  
Laxman Nayak ◽  
Paul A. H. Moss

Antigen-specific CD8+ cytotoxic T cells often demonstrate extreme conservation of T-cell receptor (TCR) usage between different individuals, but similar characteristics have not been documented for CD4+ T cells. CD4+ T cells predominantly have a helper immune role, but a cytotoxic CD4+ T-cell subset has been characterized, and we have studied the cytotoxic CD4+ T-cell response to a peptide from human cytomegalovirus glycoprotein B presented through HLA-DRB*0701. We show that this peptide elicits a cytotoxic CD4+ T-cell response that averages 3.6% of the total CD4+ T-cell repertoire of cytomegalovirus-seropositive donors. Moreover, CD4+ cytotoxic T-cell clones isolated from different individuals exhibit extensive conservation of TCR usage, which indicates strong T-cell clonal selection for peptide recognition. Remarkably, this TCR sequence was recently reported in more than 50% of cases of CD4+ T-cell large granular lymphocytosis. Immunodominance of cytotoxic CD4+ T cells thus parallels that of CD8+ subsets and suggests that cytotoxic effector function is critical to the development of T-cell clonal selection, possibly from immune competition secondary to lysis of antigen-presenting cells. In addition, these TCR sequences are highly homologous to those observed in HLA-DR7+ patients with CD4+ T-cell large granular lymphocytosis and implicate cytomegalovirus as a likely antigenic stimulus for this disorder.


Blood ◽  
2009 ◽  
Vol 114 (11) ◽  
pp. 2244-2253 ◽  
Author(s):  
Michael Rist ◽  
Corey Smith ◽  
Melissa J. Bell ◽  
Scott R. Burrows ◽  
Rajiv Khanna

Abstract The ability of CD8+ T cells to engage a diverse range of peptide–major histocompatibility complex (MHC) complexes can also lead to cross-recognition of self and nonself peptide-MHC complexes and thus directly contribute toward allograft rejection or autoimmunity. Here we present a novel form of cross-recognition by herpes virus–specific CD8+ cytotoxic T cells that challenges the current paradigm of self/non-self recognition. Functional characterization of a human leukocyte antigen (HLA) Cw*0602-restricted cytomegalovirus-specific CD8+ T-cell response revealed an unusual dual specificity toward a pp65 epitope and the alloantigen HLA DR4. This cross-recognition of HLA DR4 alloantigen was critically dependent on the coexpression of HLA DM and was preferentially directed toward the B-cell lineage. Furthermore, allostimulation of peripheral blood lymphocytes with HLA DRB*0401-expressing cells rapidly expanded CD8+ T cells, which recognized the pp65 epitope in the context of HLA Cw*0602. T-cell repertoire analysis revealed 2 dominant populations expressing T-cell receptor beta variable (TRBV)4-3 or TRBV13, with cross-reactivity exclusively mediated by the TRBV13+ clonotypes. More importantly, cross-reactive TRBV13+ clonotypes displayed markedly lower T-cell receptor binding affinity and a distinct pattern of peptide recognition, presumably mimicking a structure presented on the HLA DR4 allotype. These results illustrate a novel mechanism whereby virus-specific CD8+ T cells can cross-recognize HLA class II molecules and may contribute toward allograft rejection and/or autoimmunity.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 606-606 ◽  
Author(s):  
Louis J. Picker ◽  
Andrew W. Sylwester ◽  
Bridget L. Mitchell ◽  
Cara Taormina ◽  
Christian Pelte ◽  
...  

Abstract Human Cytomegalovirus (HCMV) is among the largest and most complex of known viruses with 150–200nm virions enclosing a double stranded 230kb DNA genome capable of coding for >200 proteins. HCMV infection is life-long, and for the vast majority of immune competent individuals clinically benign. Disease occurs almost exclusively in the setting of immune deficiency, suggesting that the stable host-parasite relationship that characterizes these infections is the result of an evolutionarily “negotiated” balance between viral mechanisms of pathogenesis and the host immune response. In keeping with, and perhaps because of this balance, the human CD4+ T cell response to whole HCMV viral lysates is enormous, with median peripheral blood frequencies of HCMV-specific cells ~5–10 fold higher than for analogous preparations of other common viruses. Although certain HCMV ORFs have been identified as targets of either the CD4+ or CD8+ T cell response, the specificities comprising the CD4+ T cell response, and both the total frequencies and component parts of the CD8+ T cell response are unknown. Here, we used cytokine flow cytometry and ~14,000 overlapping 15mer peptides comprising all 213 HCMV ORFs encoding proteins >100 amino acids in length to precisely define the total CD4+ and CD8+ HCMV-specific T cell responses and the HCMV ORFs responsible for these responses in 33 HCMV-seropositive, HLA-disparate donors. An additional 9 HCMV seronegative donors were similarly examined to define the extent to which non-HCMV responses cross-react with HCMV-encoded epitopes. We found that when totaled, the median frequencies of HCMV-specific CD4+ and CD8+ T cells in the peripheral blood of the seropositive subjects were 4.0% and 4.5% for the total CD4+ or CD8+ T cell populations, respectively (which corresponds to 9.1% and 10.5% of the memory populations, respectively). The HCMV-specific CD4+ and CD8+ T cell responses included a median 12 and 7 different ORFs, respectively, and all told, 73 HCMV ORFs were identified as targets for both CD4+ and CD8+ T cells, 26 ORFs as targets for CD8+ T cells alone, and 43 ORFS as targets for CD4+ T cells alone. UL55, UL83, UL86, UL99, and UL122 were the HCMV ORFs most commonly recognized by CD4+ T cells; UL123, UL83, UL48, UL122 and UL28 were the HCMV ORFs most commonly recognized by CD8+ T cells. The relationship between immunogenicity and 1) HLA haplotype and 2) ORF expression and function will be discussed. HCMV-seronegative individuals were non-reactive with the vast majority of HCMV peptides. Only 7 potentially cross-reactive responses were identified (all by CD8+ T cells) to 3 ORFs (US32, US29 and UL116) out of a total of almost 4,000 potential responses, suggesting fortuitous cross-reactivity with HCMV epitopes is uncommon. These data provide the first glimpse of the total human T cell response to a complex infectious agent, and will provide insight into the rules governing immunodominance and cross-reactivity in complex viral infections of humans.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3364-3364
Author(s):  
Falk Heidenreich ◽  
Elke Ruecker-Braun ◽  
Juliane S. Stickel ◽  
Anne Eugster ◽  
Denise Kühn ◽  
...  

Abstract Background Immunotherapy for CLL with new antibodies or T-cells with modified TCR relies on attractive targets. ROR1 is such a promising target since it is highly overexpressed in CLL. Chimeric antigen receptor engineered T cells and antibodies directed against the extracellular part of ROR1 have already been developed and tested in vitro or in animal models, but still there is no MHC-class I presented peptide serving as target structure for CD8+ T cells (with or without a genetically modified T cell receptor) available. Aim The aim of this study was (1) to identify an immunogenic MHC-class I presented ROR1 peptide, (2) to generate respective ROR1 peptide specific CD8+ T cell clones, and (3) to analyze the nucleotide sequence of the CDR3 region of the expressed alpha and beta T cell receptor chain. Results In mass spectrometric-based analyses of the HLA-ligandome a HLA-B*07 presented ROR1 peptide was identified in primary CLL cells of two patients. Six T cell clones specific for this particular ROR1-peptide were generated from single CD8+ T cells from 2 healthy individuals with 3 T cell clones generated from each donor. Functionality and specificity of those T cell clones were tested in cytotoxicity assays. All 6 dextramer+ CD8+ T cell clones lysed peptide loaded and HLA-B*07+ transduced K562 cells (kindly provided by Lorenz Jahn, [Jahn et al., Blood, 2015 Feb 5;125(6):949-58]). Two selected clones (XD8 and XB6) were tested for their cytotoxic potential against 2 ROR1+ HLA-B*07+ tumor cell lines (with the ROR1 peptide identified by mass spectrometry for both of them) and against 2 primary CLL cell samples. Tested clones showed a significant lysis of the respective target cells. CDR3 regions of the alpha and beta T cell receptor chain were sequenced on a single cell level. The CDR3 alpha region from each of the 3 ROR1 specific T cell clones from donor A showed some similarities to T cell clones derived from donor B (Table 1). Conclusion For the first time a MHC-class I presented ROR1 peptide antigen is reported. ROR1 positive CLL cells can be targeted by specific HLA-B*07 restricted CTLs. Respective CD8+ T cell clones with anti-leukemic activity from 2 donors share some amino acid motifs of the CDR3 alpha and beta regions. In conclusion, this information provides the possibility of generating ROR1 specific CD8+ T cells with genetically modified T cell receptors for immunotherapy and for tracking those cells after administration with next generation sequencing in peripheral blood samples of patients. Furthermore, data suggest the existence of public TCR motifs in leukemia antigen specific CTLs, which needs to be proven in follow-up experiments with larger cohorts of donors and patients. Finally, the presented strategy to identify leukemia specific peptide antigens for CD8+ T cells might be an attractive method for similar projects. Table 1 Amino acid sequences of CDR3 alpha and beta regions of the TCR of ROR1 specific CD8+ T cell clones. When comparing two clones, matching amino acids are depicted in red. The aromatic amino acids phenylalanine (F) and tyrosine (Y) are shown in blue when situated at the same position. Gaps inserted during the sequence alignment process are indicated by a hyphen '-'. Table 1. Amino acid sequences of CDR3 alpha and beta regions of the TCR of ROR1 specific CD8+ T cell clones. When comparing two clones, matching amino acids are depicted in red. The aromatic amino acids phenylalanine (F) and tyrosine (Y) are shown in blue when situated at the same position. Gaps inserted during the sequence alignment process are indicated by a hyphen '-'. Disclosures Middeke: Sanofi: Honoraria. Schetelig:Sanofi: Honoraria.


2010 ◽  
Vol 52 ◽  
pp. S263-S264
Author(s):  
R. Bakshi ◽  
V. Schlaphoff ◽  
P.V. Suneetha ◽  
P. Malinski ◽  
M.P. Manns ◽  
...  

2021 ◽  
Author(s):  
Kevin Mohammed ◽  
Austin Meadows ◽  
Sandra Hatem ◽  
Viviana Simon ◽  
Anitha D Jayaprakash ◽  
...  

Early, high-resolution metrics are needed to ascertain the immune response to vaccinations. The T cell receptor (TCR), a heterodimer of one α and one β chain, is a promising target, with the complete TCR repertoire reflecting the T cells present in an individual. To this end, we developed Tseek, an unbiased and accurate method for profiling the TCR repertoire by sequencing the TCR α and β chains and developing a suite of tools for repertoire analysis. An added advantage is the ability to non-invasively analyze T cells in peripheral blood mononuclear cells (PBMCs). Tseek and the analytical suite were used to explore the T cell response to both the COVID-19 mRNA vaccine (n=9) and the seasonal inactivated Influenza vaccine (n=5) at several time points. Neutralizing antibody titers were also measured in the covid vaccine samples. The COVID-19 vaccine elicited a broad T cell response involving multiple expanded clones, whereas the Influenza vaccine elicited a narrower response involving fewer clones. Many distinct T cell clones responded at each time point, over a month, providing temporal details lacking in the antibody measurements, especially before the antibodies are detectable. In individuals recovered from a SARS-CoV-2 infection, the first vaccine dose elicited a robust T cell response, while the second dose elicited a comparatively weaker response, indicating a saturation of the response. The physical symptoms experienced by the recipients immediately following the vaccinations were not indicative of the TCR/antibody responses, while a weak TCR response seemed to presage a weak antibody response. We also found that the TCR repertoire acts as an individual fingerprint: donors of blood samples taken years apart could be identified solely based upon their TCR repertoire, hinting at other surprising uses the TCR repertoire may have. These results demonstrate the promise of TCR repertoire sequencing as an early and sensitive measure of the adaptive immune response to vaccination, which can help improve immunogen selection and optimize vaccine dosage and spacing between doses.


1997 ◽  
Vol 186 (1) ◽  
pp. 17-23 ◽  
Author(s):  
Harumi Suzuki ◽  
Yoichi Shinkai ◽  
Lawrence G. Granger ◽  
Frederick W. Alt ◽  
Paul E. Love ◽  
...  

As a consequence of positive selection in the thymus, immature CD4+8+ double-positive, [DP] thymocytes selectively terminate synthesis of one coreceptor molecule and, as a result, differentiate into either CD4+ or CD8+ T cells. The decision by individual DP thymocytes to terminate synthesis of one or the other coreceptor molecule is referred to as lineage commitment. Previously, we reported that the intrathymic signals that induced commitment to the CD4 versus CD8 T cell lineages were markedly asymmetric. Notably, CD8 commitment appeared to require lineage-specific signals, whereas CD4 commitment appeared to occur in the absence of lineage-specific signals by default. Consequently, it was unclear whether CD4 commitment, as revealed by selective termination of CD8 coreceptor synthesis, occurred in all DP thymocytes, or whether CD4 commitment occurred only in T cell receptor (TCR)–CD3-signaled DP thymocytes. Here, we report that selective termination of CD8 coreceptor synthesis does not occur in DP thymocytes spontaneously. Rather, CD4 commitment in DP thymocytes requires signals transduced by either CD3 or ζ chains, which can signal CD4 commitment even in the absence of clonotypic TCR chains.


2020 ◽  
Author(s):  
Anastasia Gangaev ◽  
Steven L. C. Ketelaars ◽  
Olga I Isaeva ◽  
Sanne Patiwael ◽  
Anna Dopler ◽  
...  

Abstract Global efforts are ongoing to develop vaccines against SARS-CoV-2 causing COVID-19. While there is accumulating information on antibody responses against SARS-CoV-2, less is known about CD8 T-cell recognized SARS-CoV-2 epitopes and the functional state of SARS- CoV-2-specific CD8 T cells. To address these issues, we analyzed samples from 18 COVID- 19 patients for CD8 T-cell recognition of 500 peptide HLA class I complexes, restricted by 10 common HLA alleles. Several epitopes derived from ORF1ab were identified, including an immunodominant epitope restricted by HLA-A*01:01. The immunodominance was further supported by high TCR diversity within the CD8 T cells specific for this epitope. Noteworthy, the ORF1ab is not included in the majority of vaccine candidates in development, which may influence their clinical activity. In-depth characterization of identified SARS-CoV-2-specific CD8 T cell responses revealed a lack of cytokine production and a gene expression profile inhibiting T cell re-activation and migration while sustaining cell survival.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3085-3085
Author(s):  
Mark C. Lanasa ◽  
Marc C. Levesque ◽  
Sallie D. Allgood ◽  
Jon P. Gockerman ◽  
Karen Bond ◽  
...  

Abstract Background: Although most malignancies are associated with decreased numbers of circulating T cells, in CLL they are elevated 2 to 4 times normal. Rather than promoting an anti-tumor response, this increased population of T cells may contribute to a tumor microenvironment that fosters progression of the malignant clone. Immunocompetent individuals show a wide repertoire of antigen specificity in both CD4+ and CD8+ T cells, but the T cell repertoire is significantly restricted in CLL. This restriction of the T cell repertoire may be an important cause of infectious morbidity in patients with CLL. To better understand these T cell abnormalities, we enumerated T cell subsets and determined T cell receptor diversity in 18 untreated patients with CLL. Methods: T cell subsets were enumerated from peripheral blood using highly sensitive 6-color flow cytometry. The T cell repertoire was determined for 23 T cell receptor variable β chain families (TCRvβ) in purified CD4+ and CD8+ T cells. These T cell subsets were considered separately because differential restriction of the CD4+ and CD8+ subsets has been reported previously. A PCR-based spectratype assay was used to analyze the length distribution of the TCR complementarity-determining region 3 (CDR3). A limitation of prior reports using spectratype assays was that adequately complex statistical models did not exist to simultaneously analyze the highly diverse vβ families. We addressed this limitation by using a recently-developed statistical method for spectratype analysis (Bioinformatics. 21:3394–400). Briefly, for each vβ family, the divergence from an expected reference distribution was calculated. A divergence coefficient was determined for each vβ family, and the mean divergence of all 23 vβ families was calculated. This allowed for statistical comparisons among individual patients and specific vβ families. To our knowledge, we are the first group to apply this powerful methodology to the analysis of T cell repertoires in patients with CLL. Results: We found both the CD4+ and CD8+ subsets to be expanded (mean #/μL ± SD: 1134 ± 646 and 768 ± 716, respectively; reference normal CD4+ range 401–1532, CD8+ 152–838). The absolute number of CD4+ and CD8+ T cells was greater in patients with higher absolute CLL lymphocyte counts (p = 0.018, r2 = 0.30, and p = 0.23, r2 = 0.09, respectively, linear regression). The CD4:CD8 ratio was lower in IgVH unmutated subjects (mutated 2.6, umutated 1.7, p = 0.09, two-tailed t-test assuming unequal variances). Though prior reports have disagreed on whether CD4+ or CD8+ subsets show greater restriction of clonality, we observed striking clonal restriction of CD8+ but not CD4+ T cells (p < 1×10−7, 2 sided t-test assuming unequal variances). There was a trend toward greater restriction of the CD8+ subset among patients with IgVH unmutated and Zap70+ CLL, but there was no correlation with lymphocyte doubling time. Conclusions: In this cohort of 18 untreated patients with CLL, there was a greater proportional increase compared to reference standards of CD8+ versus CD4+ T cells. However, the increase in CD4+, but not CD8+, T cell numbers was significantly correlated to total CLL lymphocyte count. This observation suggests that expansion of the CD4+ T cell pool observed in CLL is proportional to leukemic burden. The restriction of TCRvβ was limited to CD8+ T cells and that this effect was independent of the size of the abnormal clone. Taken together, these findings suggest different mechanisms of dysregulation of CD4+ and CD8+ T cell subsets in CLL.


Sign in / Sign up

Export Citation Format

Share Document