scholarly journals Natural Mutations in the Receptor Binding Domain of Spike Glycoprotein Determine the Reactivity of Cross-Neutralization between Palm Civet Coronavirus and Severe Acute Respiratory Syndrome Coronavirus

2007 ◽  
Vol 81 (9) ◽  
pp. 4694-4700 ◽  
Author(s):  
Li Liu ◽  
Qing Fang ◽  
Fei Deng ◽  
Hanzhong Wang ◽  
Christopher E. Yi ◽  
...  

ABSTRACT The severe acute respiratory syndrome (SARS) outbreak of 2002 and 2003 occurred as a result of zoonotic transmission. Coronavirus (CoV) found in naturally infected palm civet (civet-CoV) represents the closest genetic relative to SARS-CoV, but the degree and the determinants of cross-neutralization among these viruses remain to be investigated. Studies indicate that the receptor binding domain (RBD) of the SARS-CoV spike (S) glycoprotein contains major determinants for viral entry and neutralization. We aim to characterize the impact of natural mutations within the RBDs of civet-CoVs on viral entry and cross-neutralization. In this study, the S glycoprotein genes were recovered from naturally infected civets in central China (Hubei province), extending the geographic distribution of civet-CoV beyond the southeastern province of Guangdong. Moreover, pseudoviruses generated in our laboratory with four civet S genes, each with a distinct RBD, infected cells expressing human receptor angiotensin-converting enzyme 2, but with 90 to 95% less efficiency compared to that of SARS-CoV. These four civet S genes were also constructed as DNA vaccines to immunize mice. Immunized sera elicited against most civet S glycoproteins displayed potent neutralizing activities against autologous viruses but were much less efficient (50% inhibitory concentration, 20- to 40-fold) at neutralizing SARS-CoV and vice versa. Convalescence-phase sera from humans were similarly ineffective against the dominant civet pseudovirus. Our findings suggest that the design of SARS vaccine should consider not only preventing the reemergence of SARS-CoV but also providing cross-protection, thus interrupting zoonotic transmission of a group of genetically divergent civet CoVs of broad geographic origin.

Author(s):  
Jinkai Zang ◽  
Chenjian Gu ◽  
Bingjie Zhou ◽  
Chao Zhang ◽  
Yong Yang ◽  
...  

AbstractRecently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen responsible for the ongoing coronavirus disease 2019 (COVID-19) pandemic. Currently, there is no vaccine available for preventing SARS-CoV-2 infection. Like closely related severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-2 also uses its receptor-binding domain (RBD) on the spike (S) protein to engage the host receptor, human angiotensin-converting enzyme 2 (ACE2), facilitating subsequent viral entry. Here we report the immunogenicity and vaccine potential of SARS-CoV-2 RBD (SARS2-RBD)-based recombinant proteins. Immunization with SARS2-RBD recombinant proteins potently induced a multi-functional antibody response in mice. The resulting antisera could efficiently block the interaction between SARS2-RBD and ACE2, inhibit S-mediated cell-cell fusion, and neutralize both SARS-CoV-2 pseudovirus entry and authentic SARS-CoV-2 infection. In addition, the anti-RBD sera also exhibited cross binding, ACE2-blockade, and neutralization effects towards SARS-CoV. More importantly, we found that the anti-RBD sera did not promote antibody-dependent enhancement of either SARS-CoV-2 pseudovirus entry or authentic virus infection of Fc receptor-bearing cells. These findings provide a solid foundation for developing RBD-based subunit vaccines for SARS-CoV2.


2021 ◽  
Vol 7 (7) ◽  
pp. 553
Author(s):  
Bin Gao ◽  
Shunyi Zhu

Coronavirus Disease 2019 (COVID−19) elicited by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS−CoV−2) is calling for novel targeted drugs. Since the viral entry into host cells depends on specific interactions between the receptor−binding domain (RBD) of the viral Spike protein and the membrane−bound monocarboxypeptidase angiotensin converting enzyme 2 (ACE2), the development of high affinity RBD binders to compete with human ACE2 represents a promising strategy for the design of therapeutics to prevent viral entry. Here, we report the discovery of such a binder and its improvement via a combination of computational and experimental approaches. The binder micasin, a known fungal defensin from the dermatophytic fungus Microsporum canis with antibacterial activity, can dock to the crevice formed by the receptor−binding motif (RBM) of RBD via an extensive shape complementarity interface (855.9 Å2 in area) with numerous hydrophobic and hydrogen−bonding interactions. Using microscale thermophoresis (MST) technique, we confirmed that micasin and its C−terminal γ−core derivative with multiple predicted interacting residues exhibited a low micromolar affinity to RBD. Expanding the interface area of micasin through a single point mutation to 970.5 Å2 accompanying an enhanced hydrogen bond network significantly improved its binding affinity by six−fold. Our work highlights the naturally occurring fungal defensins as an emerging resource that may be suitable for the development into antiviral agents for COVID−19.


2006 ◽  
Vol 281 (23) ◽  
pp. 15829-15836 ◽  
Author(s):  
Ponraj Prabakaran ◽  
Jianhua Gan ◽  
Yang Feng ◽  
Zhongyu Zhu ◽  
Vidita Choudhry ◽  
...  

2020 ◽  
Vol 6 (45) ◽  
pp. eabc9999 ◽  
Author(s):  
Yuanmei Zhu ◽  
Danwei Yu ◽  
Yang Han ◽  
Hongxia Yan ◽  
Huihui Chong ◽  
...  

The current coronavirus disease 2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus genetically close to SARS-CoV. To investigate the effects of previous SARS-CoV infection on the ability to recognize and neutralize SARS-CoV-2, we analyzed 20 convalescent serum samples collected from individuals infected with SARS-CoV during the 2003 SARS outbreak. All patient sera reacted strongly with the S1 subunit and receptor binding domain (RBD) of SARS-CoV; cross-reacted with the S ectodomain, S1, RBD, and S2 proteins of SARS-CoV-2; and neutralized both SARS-CoV and SARS-CoV-2 S protein–driven infections. Analysis of antisera from mice and rabbits immunized with a full-length S and RBD immunogens of SARS-CoV verified cross-reactive neutralization against SARS-CoV-2. A SARS-CoV–derived RBD from palm civets elicited more potent cross-neutralizing responses in immunized animals than the RBD from a human SARS-CoV strain, informing strategies for development of universal vaccines against emerging coronaviruses.


2021 ◽  
Vol 118 (38) ◽  
pp. e2106845118
Author(s):  
Neil C. Dalvie ◽  
Sergio A. Rodriguez-Aponte ◽  
Brittany L. Hartwell ◽  
Lisa H. Tostanoski ◽  
Andrew M. Biedermann ◽  
...  

Global containment of COVID-19 still requires accessible and affordable vaccines for low- and middle-income countries (LMICs). Recently approved vaccines provide needed interventions, albeit at prices that may limit their global access. Subunit vaccines based on recombinant proteins are suited for large-volume microbial manufacturing to yield billions of doses annually, minimizing their manufacturing cost. These types of vaccines are well-established, proven interventions with multiple safe and efficacious commercial examples. Many vaccine candidates of this type for SARS-CoV-2 rely on sequences containing the receptor-binding domain (RBD), which mediates viral entry to cells via ACE2. Here we report an engineered sequence variant of RBD that exhibits high-yield manufacturability, high-affinity binding to ACE2, and enhanced immunogenicity after a single dose in mice compared to the Wuhan-Hu-1 variant used in current vaccines. Antibodies raised against the engineered protein exhibited heterotypic binding to the RBD from two recently reported SARS-CoV-2 variants of concern (501Y.V1/V2). Presentation of the engineered RBD on a designed virus-like particle (VLP) also reduced weight loss in hamsters upon viral challenge.


2022 ◽  
Author(s):  
Tom Z Yuan ◽  
Carolina Lucas ◽  
Valter S Monteiro ◽  
Akiko Iwasaki ◽  
Marisa L Yang ◽  
...  

Bispecific antibodies have emerged as a promising strategy for curtailing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune escape. This brief report highlights RBT-0813 (also known as TB493-04), a synthetic, humanized, receptor-binding domain (RBD)-targeted bispecific antibody that retains picomolar affinity to the Spike (S) trimers of all major variants of concern and neutralizes both SARS-CoV-2 Delta and Omicron in vitro.


2021 ◽  
Vol 17 (8) ◽  
pp. e1009857
Author(s):  
Michelle N. Vu ◽  
Vineet D. Menachery

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) emerged as a virus with a pathogenicity closer to Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and a transmissibility similar to common cold coronaviruses (CoVs). In this review, we briefly discuss the features of the receptor-binding domain (RBD) and protease cleavage of the SARS-CoV-2 spike protein that enable SARS-CoV-2 to be a pandemic virus.


Sign in / Sign up

Export Citation Format

Share Document