scholarly journals The time for COVID-19 vaccination

2021 ◽  
Author(s):  
Esteban Domingo ◽  
Celia Perales

The composition and dynamics of viral mutant spectra in infected individuals advice that to avoid selection of SARS-CoV-2 escape mutants, vaccination campaigns for COVID-19 should be launched when disease incidence is low.

2011 ◽  
Vol 7 (2) ◽  
pp. e1001273 ◽  
Author(s):  
Guido Ferrari ◽  
Bette Korber ◽  
Nilu Goonetilleke ◽  
Michael K. P. Liu ◽  
Emma L. Turnbull ◽  
...  

Viruses ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 337
Author(s):  
Juliann Nzembi Makau ◽  
Ken Watanabe ◽  
Hiroki Otaki ◽  
Satoshi Mizuta ◽  
Takeshi Ishikawa ◽  
...  

The emergence of resistance to currently available anti-influenza drugs has heightened the need for antivirals with novel mechanisms of action. The influenza A virus (IAV) nucleoprotein (NP) is highly conserved and essential for the formation of viral ribonucleoprotein (vRNP), which serves as the template for replication and transcription. Recently, using in silico screening, we identified an antiviral compound designated NUD-1 (a 4-hydroxyquinolinone derivative) as a potential inhibitor of NP. In this study, we further analyzed the interaction between NUD-1 and NP and found that the compound interferes with the oligomerization of NP, which is required for vRNP formation, leading to the suppression of viral transcription, protein synthesis, and nuclear export of NP. We further assessed the selection of resistant variants by serially passaging a clinical isolate of the 2009 H1N1 pandemic influenza virus in the presence of NUD-1 or oseltamivir. NUD-1 did not select for resistant variants after nine passages, whereas oseltamivir selected for resistant variants after five passages. Our data demonstrate that NUD-1 interferes with the oligomerization of NP and less likely induces drug-resistant variants than oseltamivir; hence, it is a potential lead compound for the development of novel anti-influenza drugs.


2003 ◽  
Vol 10 (6) ◽  
pp. 1085-1089 ◽  
Author(s):  
Masato Nakamura ◽  
Kazuya Nakamura ◽  
Takayuki Miyazawa ◽  
Yukinobu Tohya ◽  
Masami Mochizuki ◽  
...  

ABSTRACT Canine parvovirus (CPV) is classified as a member of the feline parvovirus (FPV) subgroup. CPV isolates are divided into three antigenic types: CPV type 2 (CPV-2), CPV-2a, and CPV-2b. Recently, new antigenic types of CPV were isolated from Vietnamese leopard cats and designated CPV-2c(a) or CPV-2c(b). CPV-2c viruses were distinguished from the other antigenic types of the FPV subgroup by the absence of reactivity with several monoclonal antibodies (MAbs). To characterize the antigenicity of CPV-2c, a panel of MAbs against CPV-2c was generated and epitopes recognized by these MAbs were examined by selection of escape mutants. Four MAbs were established and classified into three groups on the basis of their reactivities: MAbs which recognize CPV-2a, CPV-2b, and CPV-2c (MAbs 2G5 and 20G4); an MAb which reacts with only CPV-2b and CPV-2c(b) (MAb 21C3); and an MAb which recognizes all types of the FPV subgroup viruses (MAb 19D7). The reactivity of MAb 20G4 with CPV-2c was higher than its reactivities with CPV-2a and CPV-2b. These types of specificities of MAbs have not been reported previously. A mapping study by analysis of neutralization-resistant mutants showed that epitopes recognized by MAbs 21C3 and 19D7 belonged to antigenic site A. Substitution of the residues in site B and the other antigenic site influenced the epitope recognized by MAb 2G5. It was suggested that the epitope recognized by MAb 20G4 was related to antigenic site B. These MAbs are expected to be useful for the detection and classification of FPV subgroup isolates.


2008 ◽  
Vol 48 ◽  
pp. S260
Author(s):  
L. Yuen ◽  
P. Revill ◽  
V. Soriano ◽  
J. Sheldon ◽  
S. Locarnini

2021 ◽  
Author(s):  
Elaine C. Chen ◽  
Pavlo Gilchuk ◽  
Seth J. Zost ◽  
Naveenchandra Suryadevara ◽  
Emma S. Winkler ◽  
...  

Unrelated individuals can produce genetically similar clones of antibodies, known as public clonotypes, which have been seen in responses to different infectious diseases as well as healthy individuals. Here we identify 37 public clonotypes in memory B cells from convalescent survivors of SARS-CoV-2 infection or in plasmablasts from an individual after vaccination with mRNA-encoded spike protein. We identified 29 public clonotypes, including clones recognizing the receptor-binding domain (RBD) in the spike protein S1 subunit (including a neutralizing, ACE2-blocking clone that protects in vivo), and others recognizing non-RBD epitopes that bound the heptad repeat 1 region of the S2 domain. Germline-revertant forms of some public clonotypes bound efficiently to spike protein, suggesting these common germline-encoded antibodies are preconfigured for avid recognition. Identification of large numbers of public clonotypes provides insight into the molecular basis of efficacy of SARS-CoV-2 vaccines and sheds light on the immune pressures driving the selection of common viral escape mutants.


Author(s):  
Leonie Forth ◽  
Dirk Höper ◽  
Martin Beer ◽  
Michael Eschbaumer

Appropriate vaccine selection is crucial in the control of foot-and-mouth disease (FMD). Vaccination can prevent clinical disease and reduces viral shedding, but there is a lack of cross-protection between the seven serotypes and their sublineages, making the selection of an adequately protective vaccine difficult. Since the exact composition of their vaccines is not consistently disclosed by all manufacturers, incompatibility of the strains used for vaccination with regionally circulating strains can cause vaccination campaigns to fail. Here, we present a deep sequencing approach for polyvalent inactivated FMD vaccines that can identify all component strains by their genome sequences. The genomes of all strains of a commercial pentavalent FMD vaccine were de-novo assembled and the vaccine composition determined semi-quantitatively. The genome assembly required high stringency parameters to prevent misassemblies caused by conserved regions of the genome shared by related strains. In contrast, reference-guided assembly is only recommended in cases where the number of strains is previously known and appropriate reference sequences are available. The presented approach can be applied not only to any inactivated whole-virus FMD vaccine, but also to vaccine quality testing in general and allows for better decision-making for vaccines with unknown composition.


2001 ◽  
Vol 82 (2) ◽  
pp. 367-371 ◽  
Author(s):  
Patrick Soussan ◽  
Stanislas Pol ◽  
Florianne Garreau ◽  
Christian Bréchot ◽  
Dina Kremsdorf

PreS2/S vaccination of chronic hepatitis B virus (HBV) carriers led to a reduction in HBV replication or clearance of virus in 30% of treated patients. This study assessed whether vaccinotherapy of chronic HBV carriers induced the selection of escape mutants in the envelope ‘a’ determinant and whether envelope genetic variability might affect the response to vaccination. No amino acid differences were observed in the ‘a’ determinant between sequences obtained before and after treatment (five responders and seven non-responders). However, alignment with HBV prototype sequences revealed seven amino acid changes. Two mutations (T140S and P127L) diverged from subtype variations. In the complete envelope sequence (five non-responders and five responders), ten amino acid modifications were detected between sequences obtained before and after treatment. The absence of any common mutations did not enable the definition of a hot spot of mutations implicated in the response to vaccination. Moreover, vaccinotherapy does not induce the selection of escape mutants in the ‘a’ determinant.


Plant Disease ◽  
2020 ◽  
Vol 104 (4) ◽  
pp. 1224-1230
Author(s):  
Adrian I. Zuniga ◽  
Michelle S. Oliveira ◽  
Carolina S. Rebello ◽  
Natalia A. Peres

Succinate dehydrogenase inhibitors (SDHIs) are the fungicides most commonly used to control Botrytis fruit rot on commercial strawberry in Florida. The medium-to-high risk of selection of resistance in the causal agent Botrytis cinerea is a threat to the efficacy of this fungicide group. In this study, we characterized the sensitivity of B. cinerea to the SDHI isofetamid, evaluated the SdhB gene mutation associated with resistance, and monitored resistance frequencies to five SDHI fungicides for two consecutive seasons. EC50 values of 70 isolates were obtained using the spiral gradient dilution (SGD) method and averaged 0.098 µg/ml of isofetamid. EC50 averages of 3.04 and >500.00 µg/ml were obtained for isolates with the N230I and P225F mutations indicating moderate and high resistance to isofetamid, respectively. A total of 565 B. cinerea isolates collected during 2015–2016 and 2016–2017 seasons from strawberry nurseries and Florida production fields were evaluated using conidial germination assays. Results for the first season showed resistance frequencies of 95, 33, 21, 25, and 0% to boscalid, penthiopyrad, fluopyram, benzovindiflupyr, and isofetamid, respectively. The respective resistance frequencies for the following season were 91, 95, 44, 27, and 1.3%. Only three isolates were found to be moderately resistant to isofetamid during the second season, and the mutation N230I was identified after sequence analysis. These isolates were confirmed to be resistant to isofetamid in fruit assays with disease incidence of 55.6 to 77.0%; however, the conidial production of the isolates was inhibited by an average of 83.9%. In general, isofetamid efficacy was higher than the other evaluated SDHIs, but a slight increase in resistance frequencies was observed in our study.


Sign in / Sign up

Export Citation Format

Share Document