scholarly journals Contribution of Topology Determinants of a Viral Movement Protein to Its Membrane Association, Intracellular Traffic, and Viral Cell-to-Cell Movement

2011 ◽  
Vol 85 (15) ◽  
pp. 7797-7809 ◽  
Author(s):  
A. Genoves ◽  
V. Pallas ◽  
J. A. Navarro
2013 ◽  
Vol 26 (9) ◽  
pp. 1016-1030 ◽  
Author(s):  
Raul Zavaliev ◽  
Amit Levy ◽  
Abed Gera ◽  
Bernard L. Epel

β-1,3-Glucanases (BG) have been implicated in enhancing virus spread by degrading callose at plasmodesmata (Pd). Here, we investigate the role of Arabidopsis BG in tobamovirus spread. During Turnip vein clearing virus infection, the transcription of two pathogenesis-related (PR)-BG AtBG2 and AtBG3 increased but that of Pd-associated BG AtBG_pap did not change. In transgenic plants, AtBG2 was retained in the endoplasmic reticulum (ER) network and was not secreted. As a stress response mediated by salicylic acid, AtBG2 was secreted and appeared as a free extracellular protein localized in the entire apoplast but did not accumulate at Pd sites. At the leading edge of Tobacco mosaic virus spread, AtBG2 co-localized with the viral movement protein in the ER-derived bodies, similarly to other ER proteins, but was not secreted to the cell wall. In atbg2 mutants, callose levels at Pd and virus spread were unaffected. Likewise, AtBG2 overexpression had no effect on virus spread. However, in atbg_pap mutants, callose at Pd was increased and virus spread was reduced. Our results demonstrate that the constitutive Pd-associated BG but not the stress-regulated extracellular PR-BG are directly involved in regulation of callose at Pd and cell-to-cell transport in Arabidopsis, including the spread of viruses.


2013 ◽  
Vol 94 (9) ◽  
pp. 2117-2128 ◽  
Author(s):  
Chulang Yu ◽  
David G. Karlin ◽  
Yuwen Lu ◽  
Kathryn Wright ◽  
Jianping Chen ◽  
...  

Emaravirus is a recently described genus of negative-strand RNA plant viruses. Emaravirus P4 protein localizes to plasmodesmata, suggesting that it could be a viral movement protein (MP). In the current study, we showed that the P4 protein of raspberry leaf blotch emaravirus (RLBV) rescued the cell-to-cell movement of a defective potato virus X (PVX) that had a deletion mutation in the triple gene block 1 movement-associated protein. This demonstrated that RLBV P4 is a functional MP. Sequence analyses revealed that P4 is a distant member of the 30K superfamily of MPs. All MPs of this family contain two highly conserved regions predicted to form β-strands, namely β1 and β2. We explored by alanine mutagenesis the role of two residues of P4 (Ile106 and Asp127) located in each of these strands. We also made the equivalent substitutions in the 29K MP of tobacco rattle virus, another member of the 30K superfamily. All substitutions abolished the ability to complement PVX movement, except for the I106A substitution in the β1 region of P4. This region has been shown to mediate membrane association of 30K MPs; our results show that it is possible to make non-conservative substitutions of a well-conserved aliphatic residue within β1 without preventing the membrane association or movement function of P4.


1999 ◽  
Vol 354 (1383) ◽  
pp. 637-643 ◽  
Author(s):  
Vitaly Citovsky

Cell–to–cell movement of tobacco mosaic virus (TMV) is used to illustrate macromolecular traffic through plant intercellular connections, the plasmodesmata. This transport process is mediated by a specialized viral movement protein, P30. In the initially infected cell, P30 is produced by transcription of a subgenomic RNA derived from the invading virus. Presumably, P30 then associates with a certain proportion of the viral RNA molecules, sequestering them from replication and mediating their transport into neighbouring uninfected host cells. This nucleoprotein complex is targeted to plasmodesmata, possibly via interaction with the host cell cytoskeleton. Prior to passage through a plasmodesma, the plasmodesmal channel is dilated by the movement protein. It is proposed that targeting of P30–TMV RNA complexes to plasmodesmata involves binding to a specific cell wall–associated receptor molecule. In addition, a cell wall–associated protein kinase, phosphorylates P30 at its carboxy–terminus and minimizes P30–induced interference with plasmodesmatal permeability during viral infection.


2001 ◽  
Vol 75 (17) ◽  
pp. 8045-8053 ◽  
Author(s):  
Hideaki Nagano ◽  
Kazuyuki Mise ◽  
Iwao Furusawa ◽  
Tetsuro Okuno

ABSTRACT Plant viruses have movement protein (MP) gene(s) essential for cell-to-cell movement in hosts. Cucumber mosaic virus (CMV) requires its own coat protein (CP) in addition to the MP for intercellular movement. Our present results using variants of both CMV and a chimeric Brome mosaic virus with the CMV MP gene revealed that CMV MP truncated in its C-terminal 33 amino acids has the ability to mediate viral movement independently of CP. Coexpression of the intact and truncated CMV MPs extremely reduced movement of the chimeric viruses, suggesting that these heterogeneous CMV MPs function antagonistically. Sequential deletion analyses of the CMV MP revealed that the dispensability of CP occurred when the C-terminal deletion ranged between 31 and 36 amino acids and that shorter deletion impaired the ability of the MP to promote viral movement. This is the first report that a region of MP determines the requirement of CP in cell-to-cell movement of a plant virus.


2002 ◽  
Vol 14 (9) ◽  
pp. 2071-2083 ◽  
Author(s):  
Asuka Itaya ◽  
Fengshan Ma ◽  
Yijun Qi ◽  
Yoshie Matsuda ◽  
Yali Zhu ◽  
...  

2001 ◽  
Vol 75 (18) ◽  
pp. 8831-8836 ◽  
Author(s):  
Kyotaro Hirashima ◽  
Yuichiro Watanabe

ABSTRACT Tobacco mosaic virus (TMV) encodes a 30-kDa movement protein (MP) which enables viral movement from cell to cell. It is, however, unclear whether the 126- and 183-kDa replicase proteins are involved in the cell-to-cell movement of TMV. In the course of our studies into TMV-R, a strain with a host range different from that of TMV-U1, we have obtained an interesting chimeric virus, UR-hel. The amino acid sequence differences between UR-hel and TMV-U1 are located only in the helicase-like domain of the replicase. Interestingly, UR-hel has a defect in its cell-to-cell movement. The replication of UR-hel showed a level of replication of the genome, synthesis, and accumulation of MP similar to that observed in TMV-U1-inoculated protoplasts. Such observations support the hypothesis that the replicase coding region may in some fashion be involved in cell-to-cell movement of TMV.


2001 ◽  
Vol 91 (2) ◽  
pp. 139-147 ◽  
Author(s):  
Mei-Yun Zhang ◽  
Stefan Schillberg ◽  
Sabine Zimmermann ◽  
Yu-Cai Liao ◽  
Gudrun Breuer ◽  
...  

2007 ◽  
Vol 20 (6) ◽  
pp. 671-681 ◽  
Author(s):  
Masanori Kaido ◽  
Yosuke Inoue ◽  
Yoshika Takeda ◽  
Kazuhiko Sugiyama ◽  
Atsushi Takeda ◽  
...  

The 3a movement protein (MP) plays a central role in the movement of the RNA plant virus, Brome mosaic virus (BMV). To identify host factor genes involved in viral movement, a cDNA library of Nicotiana benthamiana, a systemic host for BMV, was screened with far-Western blotting using a recombinant BMV MP as probe. One positive clone encoded a protein with sequence similarity to the α chain of nascent-polypeptide-associated complex from various organisms, which is proposed to contribute to the fidelity of translocation of newly synthesized proteins. The orthologous gene from N. benthamiana was designated NbNACa1. The binding of NbNACa1 to BMV MP was confirmed in vivo with an agroinfiltration-immunoprecipitation assay. To investigate the involvement of NbNACa1 in BMV multiplication, NbNACa1-silenced (GSNAC) transgenic N. benthamiana plants were produced. Downregulation of NbNACa1 expression reduced virus accumulation in inoculated leaves but not in protoplasts. A microprojectile bombardment assay to monitor BMV-MP-assisted viral movement demonstrated reduced virus spread in GSNAC plants. The localization to the cell wall of BMV MP fused to green fluorescent protein was delayed in GSNAC plants. From these results, we propose that NbNACa1 is involved in BMV cell-to-cell movement through the regulation of BMV MP localization to the plasmodesmata.


Sign in / Sign up

Export Citation Format

Share Document