scholarly journals Transforming Growth Factor β Enhances Respiratory Syncytial Virus Replication and Tumor Necrosis Factor Alpha Induction in Human Epithelial Cells

2007 ◽  
Vol 81 (6) ◽  
pp. 2880-2886 ◽  
Author(s):  
Kelly L. McCann ◽  
Farhad Imani

ABSTRACT Asthma is characterized as a chronic inflammatory disease associated with significant tissue remodeling. Patients with asthma are more susceptible to virus-induced exacerbation, which subsequently can lead to increased rates of hospitalization and mortality. While the most common cause of asthma-related deaths is respiratory viral infections, the underlying factors in the lung environment which render asthmatic subjects more susceptible to viral exacerbation are not yet identified. Since transforming growth factor β (TGF-β) is a critical cytokine for lung tissue remodeling and asthma phenotype, we have focused on the effects of TGF-β on viral replication and virus-induced inflammation. Treatment of human epithelial cells with TGF-β increased respiratory syncytial virus (RSV) replication by approximately fourfold. Tumor necrosis factor alpha (TNF-α) mRNA and protein expression were also significantly increased above levels with RSV infection alone. The increase in RSV replication and TNF-α expression after TGF-β treatment was concomitant with an increase in virus-induced p38 mitogen-activated protein kinase activation. Our data reveal a novel effect for TGF-β on RSV replication and provide a potential mechanism for the exaggerated inflammatory response observed in asthmatic subjects during respiratory viral infections.

1998 ◽  
Vol 5 (4) ◽  
pp. 588-591 ◽  
Author(s):  
Patricia Méndez-Samperio ◽  
Marisol Hernandez-Garay ◽  
Angela Nuñez Vazquez

ABSTRACT The effect of exogenous transforming growth factor β (TGF-β) onMycobacterium bovis BCG-induced tumor necrosis factor alpha (TNF-α) production by human mononuclear cells was studied. It was found that TNF-α production by human cells stimulated with BCG was significantly inhibited by TGF-β. The specificity of the observed inhibition was demonstrated, since the addition of an anti-TGF-β neutralizing monoclonal antibody completely reversed the inhibitory effect. Furthermore, the suppressive effect of TGF-β on TNF-α secretion in this system was not due to a direct cytotoxic effect, since cell viability was comparable in the presence or absence of TGF-β. Interestingly, our results demonstrated comparative suppressive effects of TGF-β and interleukin-10 on BCG-induced TNF-α secretion. Together, the data demonstrate, for the first time, that TGF-β inhibits BCG-induced TNF-α secretion by human cells.


2003 ◽  
Vol 71 (9) ◽  
pp. 4850-4856 ◽  
Author(s):  
Ching Li ◽  
Latifu A. Sanni ◽  
Fakhreldin Omer ◽  
Eleanor Riley ◽  
Jean Langhorne

ABSTRACT Interleukin-10 (IL-10)-deficient (IL-10−/−) mice infected with Plasmodium chabaudi (AS) suffer a more severe disease and exhibit a higher rate of mortality than control C57BL/6 mice. Here, we show that a drop in body temperature to below 28°C and pronounced hypoglycemia of below 3 mM are reliable indicators of a lethal infection. Elevated inflammatory responses have been shown to accompany pathology in infected IL-10−/− mice. We show that neutralization of tumor necrosis factor alpha (TNF-α) in IL-10−/− mice abolishes mortality and ameliorates the hypothermia, weight loss, and anemia but does not affect the degree of hypoglycemia. These data suggest that TNF-α is involved in some of the pathology associated with a P. chabaudi infection in IL-10−/− mice but other factors play a role. IL-10−/− mice that survive a primary infection have been shown to control gamma interferon (IFN-γ) and TNF-α production, indicating that other cytokines or mechanisms may be involved in their down-regulation. Significantly higher levels of transforming growth factor β (TGF-β), a cytokine with such properties, are present in the plasma of infected IL-10−/− mice at a time that coincides with the disappearance of IFN-γ and TNF-α from the blood. Neutralization of TGF-β in IL-10−/− mice resulted in higher circulating amounts of TNF-α and IFN-γ, and all treated IL-10−/− mice died within 12 days with increased pathology but with no obvious increase in parasitemia. Our data suggest that a tight regulation of the balance between regulatory cytokines such as IL-10 and TGF-β and inflammatory cytokines such as IFN-γ and TNF-α is critical for survival in a mouse malaria infection.


1998 ◽  
Vol 18 (10) ◽  
pp. 5678-5689 ◽  
Author(s):  
Mark Baer ◽  
Allan Dillner ◽  
Richard C. Schwartz ◽  
Constance Sedon ◽  
Sergei Nedospasov ◽  
...  

ABSTRACT Macrophages are a major source of proinflammatory cytokines such as tumor necrosis factor alpha (TNF-α), which are expressed during conditions of inflammation, infection, or injury. We identified an activity secreted by a macrophage tumor cell line that negatively regulates bacterial lipopolysaccharide (LPS)-induced expression of TNF-α. This activity, termed TNF-α-inhibiting factor (TIF), suppressed the induction of TNF-α expression in macrophages, whereas induction of three other proinflammatory cytokines (interleukin-1β [IL-1β], IL-6, and monocyte chemoattractant protein 1) was accelerated or enhanced. A similar or identical inhibitory activity was secreted by IC-21 macrophages following LPS stimulation. Inhibition of TNF-α expression by macrophage conditioned medium was associated with selective induction of the NF-κB p50 subunit. Hyperinduction of p50 occurred with delayed kinetics in LPS-stimulated macrophages but not in fibroblasts. Overexpression of p50 blocked LPS-induced transcription from a TNF-α promoter reporter construct, showing that this transcription factor is an inhibitor of the TNF-α gene. Repression of the TNF-α promoter by TIF required a distal region that includes three NF-κB binding sites with preferential affinity for p50 homodimers. Thus, the selective repression of the TNF-α promoter by TIF may be explained by the specific binding of inhibitory p50 homodimers. We propose that TIF serves as a negative autocrine signal to attenuate TNF-α expression in activated macrophages. TIF is distinct from the known TNF-α-inhibiting factors IL-4, IL-10, and transforming growth factor β and may represent a novel cytokine.


2017 ◽  
Vol 85 (3) ◽  
Author(s):  
Alvaro Torres-Huerta ◽  
Tomás Villaseñor ◽  
Angel Flores-Alcantar ◽  
Cristina Parada ◽  
Estefanía Alemán-Navarro ◽  
...  

ABSTRACT Mycobacterium tuberculosis is the causal agent of tuberculosis. Tumor necrosis factor alpha (TNF-α), transforming growth factor β (TGF-β), and gamma interferon (IFN-γ) secreted by activated macrophages and lymphocytes are considered essential to contain Mycobacterium tuberculosis infection. The CD43 sialomucin has been reported to act as a receptor for bacilli through its interaction with the chaperonin Cpn60.2, facilitating mycobacterium-macrophage contact. We report here that Cpn60.2 induces both human THP-1 cells and mouse-derived bone marrow-derived macrophages (BMMs) to produce TNF-α and that this production is CD43 dependent. In addition, we present evidence that the signaling pathway leading to TNF-α production upon interaction with Cpn60.2 requires active Src family kinases, phospholipase C-γ (PLC-γ), phosphatidylinositol 3-kinase (PI3K), p38, and Jun N-terminal protein kinase (JNK), both in BMMs and in THP-1 cells. Our data highlight the role of CD43 and Cpn60.2 in TNF-α production and underscore an important role for CD43 in the host-mycobacterium interaction.


2008 ◽  
Vol 34 (11) ◽  
pp. 942-949 ◽  
Author(s):  
Eliana Peresi ◽  
Sônia Maria Usó Ruiz Silva ◽  
Sueli Aparecida Calvi ◽  
Jussara Marcondes-Machado

OBJETIVO: Analisar o padrão de citocinas pró- e antiinflamatórias e da resposta de fase aguda (RFA) como marcadores de resposta ao tratamento da tuberculose pulmonar. MÉTODOS: Determinação dos níveis de interferon-gama (IFN-γ), tumor necrosis factor-alpha (TNF-α, fator de necrose tumoral-alfa), interleucina-10 (IL-10) e transforming growth factor-beta (TGF-β, fator transformador de crescimento-beta), pelo método ELISA, em sobrenadante de cultura de células mononucleares do sangue periférico e monócitos, assim como dos níveis de proteínas totais, albumina, globulinas, alfa-1-glicoproteína ácida (AGA), proteína C reativa (PCR) e velocidade de hemossedimentação (VHS) em 28 doentes com tuberculose pulmonar, em três tempos: antes (T0), aos três meses (T3) e aos seis meses (T6) de tratamento, em relação aos controles saudáveis, em um único tempo. RESULTADOS: Os pacientes apresentaram valores maiores de citocinas e RFA que os controles em T0, com diminuição em T3 e diminuição (TNF-α, IL-10, TGF-β, AGA e VHS) ou normalização (IFN-γ e PCR) em T6. CONCLUSÕES: PCR, AGA e VHS são possíveis marcadores para auxiliar no diagnóstico de tuberculose pulmonar e na indicação de tratamento de indivíduos com baciloscopia negativa; PCR (T0 > T3 > T6 = referência) pode também ser marcador de resposta ao tratamento. Antes do tratamento, o perfil Th0 (IFN-γ, IL-10, TNF-α e TGF-β), indutor de e protetor contra inflamação, prevaleceu nos pacientes; em T6, prevaleceu o perfil Th2 (IL-10, TNF-α e TGF-β), protetor contra efeito nocivo pró-inflamatório do TNF-α ainda presente. O comportamento do IFN-γ (T0 > T3 > T6 = controle) sugere sua utilização como marcador de resposta ao tratamento.


2007 ◽  
Vol 81 (15) ◽  
pp. 8361-8366 ◽  
Author(s):  
Sandra Fuentes ◽  
Kim C. Tran ◽  
Priya Luthra ◽  
Michael N. Teng ◽  
Biao He

ABSTRACT Respiratory syncytial virus (RSV), a member of the Paramyxoviridae family, encodes a small hydrophobic (SH) protein of unknown function. Parainfluenza virus 5 (PIV5), a prototypical paramyxovirus, also encodes an SH protein, which inhibits tumor necrosis factor alpha (TNF-α) signaling. In this study, recombinant PIV5 viruses without their own SH but containing RSV SH (from RSV strain A2 or B1) in its place (PIV5ΔSH-RSV SH) and RSV lacking its own SH (RSVΔSH) were generated and analyzed. The results indicate that the SH protein of RSV has a function similar to that of PIV5 SH and that it can inhibit TNF-α signaling.


2004 ◽  
Vol 72 (4) ◽  
pp. 1866-1873 ◽  
Author(s):  
Mardi A. Crane-Godreau ◽  
Charles R. Wira

ABSTRACT Entry of bacteria from the vagina into the uterus raises the question of uterine epithelial cell (UEC) signaling in response to the presence of bacteria. Our model system helps to define microbially elicited UEC basolateral cytokine release, important in regulating underlying stromal immune cell protection. UECs from adult rats were grown in cell culture inserts to establish a confluent polarized monolayer as was determined by transepithelial resistance (TER). Polarized epithelial cell cultures were treated apically with live or heat-killed Escherichia coli or Lactobacillus rhamnosus prior to collection of basolateral media after 24 h of incubation. Coculture of polarized UECs with live E. coli had no effect on epithelial cell TER. In response to exposure to live E. coli, epithelial cell basolateral release of macrophage inflammatory protein 3α (MIP3α) and tumor necrosis factor alpha (TNF-α) increased at a time when basolateral release of biologically active transforming growth factor β (TGF-β) decreased. Incubation of UECs with heat-killed E. coli resulted in an increased basolateral release of MIP3α and TNF-α, without affecting TER or TGF-β. In contrast to E. coli, live or heat-killed L. rhamnosus had no effect on TER or cytokine release. These studies indicate that polarized rat UECs respond to gram-negative E. coli by releasing the cytokines MIP3α and TNF-α, signals important to both the innate and adaptive immune systems. These findings suggest that UEC responses to bacteria are selective and important in initiating and regulating immune protection in the female reproductive tract.


Sign in / Sign up

Export Citation Format

Share Document