scholarly journals Viromes, Not Gene Markers, for Studying Double-Stranded DNA Virus Communities

2014 ◽  
Vol 89 (5) ◽  
pp. 2459-2461 ◽  
Author(s):  
Matthew B. Sullivan

Microbes have recently been recognized as dominant forces in nature, with studies benefiting from gene markers that can be quickly, informatively, and universally surveyed. Viruses, where explored, have proven to be powerful modulators of locally and globally important microbes through mortality, horizontal gene transfer, and metabolic reprogramming. However, community-wide virus studies have been challenged by the lack of a universal marker. Here, I propose that viral metagenomics has advanced to largely take over study of double-stranded DNA viruses.

2011 ◽  
Vol 11 (1) ◽  
Author(s):  
Huiquan Liu ◽  
Yanping Fu ◽  
Bo Li ◽  
Xiao Yu ◽  
Jiatao Xie ◽  
...  

2017 ◽  
Vol 91 (14) ◽  
Author(s):  
Julien Andreani ◽  
Jacques Yaacoub Bou Khalil ◽  
Madhumati Sevvana ◽  
Samia Benamar ◽  
Fabrizio Di Pinto ◽  
...  

ABSTRACT African swine fever virus, a double-stranded DNA virus that infects pigs, is the only known member of the Asfarviridae family. Nevertheless, during our isolation and sequencing of the complete genome of faustovirus, followed by the description of kaumoebavirus, carried out over the past 2 years, we observed the emergence of previously unknown related viruses within this group of viruses. Here we describe the isolation of pacmanvirus, a fourth member in this group, which is capable of infecting Acanthamoeba castellanii. Pacmanvirus A23 has a linear compact genome of 395,405 bp, with a 33.62% G+C content. The pacmanvirus genome harbors 465 genes, with a high coding density. An analysis of reciprocal best hits shows that 31 genes are conserved between African swine fever virus, pacmanvirus, faustovirus, and kaumoebavirus. Moreover, the major capsid protein locus of pacmanvirus appears to be different from those of kaumoebavirus and faustovirus. Overall, comparative and genomic analyses reveal the emergence of a new group or cluster of viruses encompassing African swine fever virus, faustovirus, pacmanvirus, and kaumoebavirus. IMPORTANCE Pacmanvirus is a newly discovered icosahedral double-stranded DNA virus that was isolated from an environmental sample by amoeba coculture. We describe herein its structure and replicative cycle, along with genomic analysis and genomic comparisons with previously known viruses. This virus represents the third virus, after faustovirus and kaumoebavirus, that is most closely related to classical representatives of the Asfarviridae family. These results highlight the emergence of previously unknown double-stranded DNA viruses which delineate and extend the diversity of a group around the asfarvirus members.


2008 ◽  
Vol 83 (5) ◽  
pp. 2310-2320 ◽  
Author(s):  
Christopher L. Netherton ◽  
Jennifer Simpson ◽  
Otto Haller ◽  
Thomas E. Wileman ◽  
Haru-Hisa Takamatsu ◽  
...  

ABSTRACT Increasing evidence points to the importance of the interferon (IFN) response in determining the host range and virulence of African swine fever virus (ASFV). Infection with attenuated strains of ASFV leads to the upregulation of genes controlled by IFN pathways, including myxovirus resistance (Mx) genes that are potent effectors of the antiviral state. Mx gene products are known to inhibit the replication of many negative-sense single-stranded RNA viruses, as well as double-stranded RNA viruses, positive-sense single-stranded RNA viruses, and the reverse-transcribing DNA virus hepatitis B virus. Here, we provide data that extend the known range of viruses inhibited by Mx to include the large double-stranded DNA viruses. Stably transfected Vero cells expressing human MxA protein did not support ASFV plaque formation, and virus replication in these cells was reduced 100-fold compared with that in control cells. In contrast, ASFV replication in cells expressing MxB protein or a mutant MxA protein was similar to that in control Vero cells. There was a drastic reduction in ASFV late protein synthesis in MxA-expressing cells, correlating with the results of previous work on the effect of IFN on viral replication. Strikingly, the inhibition of ASFV replication was linked to the recruitment of MxA protein to perinuclear viral assembly sites, where the protein surrounded the virus factories. Interactions between ASFV and MxA were similar to those seen between MxA and different RNA viruses, suggesting a common inhibitory mechanism.


2006 ◽  
Vol 188 (3) ◽  
pp. 1134-1142 ◽  
Author(s):  
D. R. Rokyta ◽  
C. L. Burch ◽  
S. B. Caudle ◽  
H. A. Wichman

ABSTRACT Bacteriophage genomic evolution has been largely characterized by rampant, promiscuous horizontal gene transfer involving both homologous and nonhomologous source DNA. This pattern has emerged through study of the tailed double-stranded DNA (dsDNA) phages and is based upon a sparse sampling of the enormous diversity of these phages. The single-stranded DNA phages of the family Microviridae, including φX174, appear to evolve through qualitatively different mechanisms, possibly as result of their strictly lytic lifestyle and small genome size. However, this apparent difference could reflect merely a dearth of relevant data. We sought to characterize the forces that contributed to the molecular evolution of the Microviridae and to examine the genetic structure of this single family of bacteriophage by sequencing the genomes of microvirid phage isolated on a single bacterial host. Microvirids comprised 3.5% of the detectable phage in our environmental samples, and sequencing yielded 42 new microvirid genomes. Phylogenetic analysis of the genes contained in these and five previously described microvirid phages identified three distinct clades and revealed at least two horizontal transfer events between clades. All members of one clade have a block of five putative genes that are not present in any member of the other two clades. Our data indicate that horizontal transfer does contribute to the evolution of the microvirids but is both quantitatively and qualitatively different from what has been observed for the dsDNA phages.


Blood ◽  
2017 ◽  
Vol 129 (16) ◽  
pp. 2316-2325 ◽  
Author(s):  
Joshua A. Hill ◽  
Bryan T. Mayer ◽  
Hu Xie ◽  
Wendy M. Leisenring ◽  
Meei-Li Huang ◽  
...  

Key PointsWe demonstrate frequent plasma detection of multiple double-stranded DNA viruses after allogeneic hematopoietic cell transplantation. There was a dose-response relationship of the cumulative burden of virus exposure with early (days 0-100) and late (days 101-365) mortality.


2020 ◽  
Vol 30 (1) ◽  
pp. 15
Author(s):  
Indrawati Sendow ◽  
Atik Ratnawati ◽  
NLP I Dharmayanti ◽  
Muharam Saepulloh

<p class="00-6Abstrak2Wtz">African swine fever (ASF) is a highly infectious disease in pigs that caused by the double-stranded DNA virus of the Asfarviridae family. The disease is characterized by haemorrhages in the ears, back and legs. This virus causes death in pigs and has a large economic impact. However, ASF is not a zoonotic disease, hence it has no an impact on human health. This paper  will discuss about ASF disease, route of transmision, how to diagnose, and handling of ASF. This disease has spread throughout Asia in a relatively short time in 2019, and this exotic disease has been reported entering Indonesia at the end of 2019. There is no effective prevention and control of the disease. Several vaccines have been developed but are still considered ineffective while commercial vaccines are not yet available. Safety and effectiveness of vaccines are still being considered because ASF virus is very unique and different from other DNA viruses,. Therefore, prevention of ASF infection should be done by conducting strict biosecurity, applying regulations on the movement of pigs and pig products to the region or country.</p>


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Carlos Díaz ◽  
Vladimír Celer ◽  
Ivo Frébort

AbstractSwine DNA viruses have developed unique mechanisms for evasion of the host immune system, infection and DNA replication, and finally, construction and release of new viral particles. This article reviews four classes of DNA viruses affecting swine: porcine circoviruses, African swine fever virus, porcine parvoviruses, and pseudorabies virus. Porcine circoviruses belonging to the Circoviridae family are small single-stranded DNA viruses causing different diseases in swine including poly-weaning multisystemic wasting syndrome, porcine dermatitis and nephropathy syndrome, and porcine respiratory disease complex. African swine fever virus, the only member of the Asfivirus genus in the Asfarviridae family, is a large double-stranded DNA virus and for its propensity to cause high mortality, it is currently considered the most dangerous virus in the pig industry. Porcine parvoviruses are small single-stranded DNA viruses belonging to the Parvoviridae family that cause reproductive failure in pregnant gilts. Pseudorabies virus, or suid herpesvirus 1, is a large double-stranded DNA virus belonging to the Herpesviridae family and Alphaherpesvirinae subfamily. Recent findings including general as well as genetic classification, virus structure, clinical syndromes and the host immune system responses and vaccine protection are described for all four swine DNA virus classes.


2009 ◽  
Vol 19 (8) ◽  
pp. 1441-1449 ◽  
Author(s):  
A. Monier ◽  
A. Pagarete ◽  
C. de Vargas ◽  
M. J. Allen ◽  
B. Read ◽  
...  

BMC Genomics ◽  
2007 ◽  
Vol 8 (1) ◽  
pp. 456 ◽  
Author(s):  
Adam Monier ◽  
Jean-Michel Claverie ◽  
Hiroyuki Ogata

Sign in / Sign up

Export Citation Format

Share Document