scholarly journals A Nuclear Export Signal in the Matrix Protein of Influenza A Virus Is Required for Efficient Virus Replication

2012 ◽  
Vol 86 (9) ◽  
pp. 4883-4891 ◽  
Author(s):  
S. Cao ◽  
X. Liu ◽  
M. Yu ◽  
J. Li ◽  
X. Jia ◽  
...  
2012 ◽  
Vol 86 (18) ◽  
pp. 10259-10260
Author(s):  
Shuai Cao ◽  
Yi Shi ◽  
Shuguang Tan ◽  
Hao Song ◽  
George F. Gao ◽  
...  

2004 ◽  
Vol 78 (18) ◽  
pp. 10149-10155 ◽  
Author(s):  
Kiyoko Iwatsuki-Horimoto ◽  
Taisuke Horimoto ◽  
Yutaka Fujii ◽  
Yoshihiro Kawaoka

ABSTRACT The NS2 (NEP) protein of influenza A virus contains a highly conserved nuclear export signal (NES) motif in its amino-terminal region (12ILMRMSKMQL21, A/WSN/33), which is thought to be required for nuclear export of viral ribonucleoprotein complexes (vRNPs) mediated by a cellular export factor, CRM1. However, simultaneous replacement of three hydrophobic residues in the NES with alanine does not affect NS2 (NEP) binding to CRM1, although the virus with these mutations is not viable. To determine the extent of sequence conservation required by the NS2 (NEP) NES for its export function during viral replication, we randomly introduced mutations by degenerative mutagenesis into the region of NS cDNA encoding the NS2 (NEP) NES and then attempted to generate mutant viruses containing these alterations by reverse genetics. Sequence analysis of the recovered viruses showed that although some of the mutants possessed amino acids other than those conserved in the NES, hydrophobicity within this motif was maintained. Nuclear export of vRNPs representing all of the mutant viruses was completely inhibited in the presence of a CRM1 inhibitor, leptomycin B, as was the transport of wild-type virus, indicating that the CRM1-mediated pathway is responsible for the nuclear export of both wild-type and mutant vRNPs. The vRNPs of some of the mutant viruses were exported in a delayed manner, resulting in limited viral growth in cell culture and in mice. These results suggest that the NES motif may be an attractive target for the introduction of attenuating mutations in the production of live vaccine viruses.


2017 ◽  
Vol 114 (32) ◽  
pp. 8550-8555 ◽  
Author(s):  
Wenting Zhang ◽  
Wenjie Zheng ◽  
Yukimatsu Toh ◽  
Miguel A. Betancourt-Solis ◽  
Jiagang Tu ◽  
...  

Many enveloped viruses encode a matrix protein. In the influenza A virus, the matrix protein M1 polymerizes into a rigid protein layer underneath the viral envelope to help enforce the shape and structural integrity of intact viruses. The influenza virus M1 is also known to mediate virus budding as well as the nuclear export of the viral nucleocapsids and their subsequent packaging into nascent viral particles. Despite extensive studies on the influenza A virus M1 (FLUA-M1), only crystal structures of its N-terminal domain are available. Here we report the crystal structure of the full-length M1 from another orthomyxovirus that infects fish, the infectious salmon anemia virus (ISAV). The structure of ISAV-M1 assumes the shape of an elbow, with its N domain closely resembling that of the FLUA-M1. The C domain, which is connected to the N domain through a flexible linker, is made of four α-helices packed as a tight bundle. In the crystal, ISAV-M1 monomers form infinite 2D arrays with a network of interactions involving both the N and C domains. Results from liposome flotation assays indicated that ISAV-M1 binds membrane via electrostatic interactions that are primarily mediated by a positively charged surface loop from the N domain. Cryoelectron tomography reconstruction of intact ISA virions identified a matrix protein layer adjacent to the inner leaflet of the viral membrane. The physical dimensions of the virion-associated matrix layer are consistent with the 2D ISAV-M1 crystal lattice, suggesting that the crystal lattice is a valid model for studying M1–M1, M1–membrane, and M1–RNP interactions in the virion.


Author(s):  
Julia Peukes ◽  
Xiaoli Xiong ◽  
Simon Erlendsson ◽  
Kun Qu ◽  
William Wan ◽  
...  

Influenza A virus causes millions of severe illnesses during annual epidemics. The most abundant protein in influenza virions is the matrix protein M1 that mediates virus assembly by forming an endoskeleton beneath the virus membrane. The structure of full-length M1, and how it oligomerizes to mediate assembly of virions, is unknown. Here we have determined the complete structure of assembled M1 within intact virus particles, as well as the structure of M1 oligomers reconstituted in vitro. We found that the C-terminal domain of M1 is disordered in solution, but can fold and bind in trans to the N-terminal domain of another M1 monomer, thus polymerising M1 into linear strands which coat the interior surface of the assembling virion membrane. In the M1 polymer, five histidine residues, contributed by three different M1 monomers, form a cluster that can serve as the pH-sensitive disassembly switch after entry into a target cell. These structures therefore provide mechanisms for influenza virus assembly and disassembly.


Retrovirology ◽  
2011 ◽  
Vol 8 (1) ◽  
pp. 6 ◽  
Author(s):  
Noémie Renault ◽  
Joelle Tobaly-Tapiero ◽  
Joris Paris ◽  
Marie-Lou Giron ◽  
Audrey Coiffic ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document