scholarly journals Novel Binding Sites for Regulatory Factors in the Human Papillomavirus Type 18 Enhancer and Promoter Identified by In Vivo Footprinting

1998 ◽  
Vol 72 (1) ◽  
pp. 708-716 ◽  
Author(s):  
Paula H. Bednarek ◽  
Betty J. Lee ◽  
Sanjay Gandhi ◽  
Edward Lee ◽  
Benette Phillips

ABSTRACT The E6 and E7 genes of human papillomaviruses (HPVs) associated with anogenital cancers are largely responsible for the oncogenic activity of these viruses, and regulation of these genes has been intensively studied. Transcription of the E6 and E7 genes is controlled by the viral upstream regulatory region (URR). We have used in vivo footprinting to examine the occupancy by regulatory factors of the HPV type 18 (HPV18) URR enhancer and promoter in the cervical carcinoma cell lines HeLa and C4-II. While corroborating occupancy in vivo of all of the elements previously implicated in the transcriptional control of the HPV18 E6 and E7 genes by in vitro DNase I footprinting, gel retardation assays, and transfection studies, we also detect occupancy in vivo of several enhancer and promoter sequences which have not been previously identified as HPV18 URR regulatory elements. Our data suggest that the HPV18 enhancer and promoter are more densely occupied by DNA-binding proteins than previously thought and raise the possibility that additional, possibly novel factors contribute to transcription of the HPV18 early genes.

2015 ◽  
Vol 35 (22) ◽  
pp. 3880-3891 ◽  
Author(s):  
Parul Mehra ◽  
Andrew D. Wells

Interleukin-2 (IL-2) is a potent cytokine with roles in both immunity and tolerance. Genetic studies in humans and mice demonstrate a role forIl2in autoimmune disease susceptibility, and for decades the proximalIl2upstream regulatory region has served as a paradigm of tissue-specific, inducible gene regulation. In this study, we have identified a novel long-range enhancer of theIl2gene located 83 kb upstream of the transcription start site. This element can potently enhanceIl2transcription in recombinant reporter assaysin vitro, and the native region undergoes chromatin remodeling, transcribes a bidirectional enhancer RNA, and loops to physically interact with theIl2genein vivoin a CD28-dependent manner in CD4+T cells. Thiscisregulatory element is evolutionarily conserved and is situated near a human single-nucleotide polymorphism (SNP) associated with multiple autoimmune disorders. These results indicate that the regulatory architecture of theIl2locus is more complex than previously appreciated and suggest a novel molecular basis for the genetic association ofIl2polymorphism with autoimmune disease.


2019 ◽  
Vol 47 (15) ◽  
pp. 7901-7913 ◽  
Author(s):  
Aldana P David ◽  
Angélique Pipier ◽  
Federico Pascutti ◽  
Andrés Binolfi ◽  
Andrea M J Weiner ◽  
...  

Abstract Guanine-rich DNA strands can fold into non-canonical four-stranded secondary structures named G-quadruplexes (G4). Experimental evidences suggest that G4-DNA surrounding transcription start sites act as cis-regulatory elements by either stimulating or inhibiting gene transcription. Therefore, proteins able to target and regulate specific G4 formation/unfolding are crucial for G4-mediated transcriptional control. Here we present data revealing that CNBP acts in vitro as a G4-unfolding protein over a tetramolecular G4 formed by the TG4T oligonucleotide, as well as over the G4 folded in the promoters of several oncogenes. CNBP depletion in cellulo led to a reduction in the transcription of endogenous KRAS, suggesting a regulatory role of CNBP in relieving the transcriptional abrogation due to G4 formation. CNBP activity was also assayed over the evolutionary conserved G4 enhancing the transcription of NOGGIN (NOG) developmental gene. CNBP unfolded in vitro NOG G4 and experiments performed in cellulo and in vivo in developing zebrafish showed a repressive role of CNBP on the transcription of this gene by G4 unwinding. Our results shed light on the mechanisms underlying CNBP way of action, as well as reinforce the notion about the existence and function of G4s in whole living organisms.


1998 ◽  
Vol 16 (1) ◽  
pp. 330-337 ◽  
Author(s):  
R M Alani ◽  
K Münger

The human papillomaviruses (HPVS) are small DNA tumor viruses that infect epithelial cells and induce proliferative lesions. Substantial epidemiologic data along with in vitro and in vivo studies have led to the implication of particular HPVs with the development of epithelial malignancies. Greater than 90% of all cervical carcinomas are positive for HPV infection. Most of these lesions are caused by infection with mucosal-associated high-risk HPV subtypes. Much work has been undertaken in basic science laboratories to determine the molecular basis for HPV-associated malignancies. Although many significant advances have been made in understanding the biologic properties of these viruses using in vitro analyses, the field has been greatly hindered until recently by the inability to propagate the virus in culture. In this review, we discuss the basic biologic properties of HPVs and the current understanding of the mechanisms of cellular transformation by malignancy-associated viral subtypes. We place particular emphasis on discussion of the HPV oncogenes, E6 and E7. We also discuss premalignant and malignant disorders of squamous and mucosal epithelia, which have been associated with HPV infections, and the current understanding of the mechanism of HPV-associated carcinogenesis in these settings. We focus these discussions on cervical carcinogenesis and briefly review the particulars regarding HPV-associated malignancies in normal and immunocompromised hosts. We end with a discussion of potential targeted molecular therapies for HPV-associated malignancies that may result from the current knowledge of HPV-related cellular growth dysregulation and carcinogenesis.


1990 ◽  
Vol 10 (10) ◽  
pp. 5257-5270
Author(s):  
A Roy ◽  
F Exinger ◽  
R Losson

Expression of the yeast pyrimidine biosynthetic gene, URA3, is induced three- to fivefold in response to uracil starvation, and this regulation is mediated by the transcriptional activator PPR1 (pyrimidine pathway regulator 1). In this study, we have analyzed the regulatory elements of the URA3 promoter by DNase I footprinting, using partially purified yeast cell extracts, by deletion mutagenesis, and by 5'-end mapping of RNA transcripts. Two DNA-binding activities have been detected, and at least four distinct cis-acting regions have been identified. A region rich in poly(dA-dT) serves as an upstream promoter element necessary for the basal level of URA3 expression. A 16-base-pair sequence with dyad symmetry acts acts as a uracil-controlled upstream activating site (UASURA) and shows a specific binding only with cell extracts from strains overproducing PPR1. This in vitro binding does not require dihydroorotic acid, the physiological inducer of URA3. The TATA region appears to be composed of two functionally distinct (constitutive and regulatory) elements. Two G + A-rich regions surrounding this TATA box bind an unidentified factor called GA-binding factor. The 5' copy, GA1, is involved in PPR1 induction and overlaps the constitutive TATA region. The 3' region, GA2, is necessary for maximal expression. Neither of these GA sequences acts as a UAS in a CYC1-lacZ context. The promoters of the unlinked but coordinately regulated URA1 and URA4 genes contain highly conserved copies of the UASURA sequence, which prompted us to investigate the effects of many point mutations within this UASURA sequence on PPR1-dependent binding. In this way, we have identified the most important residues of this binding site and found that a nonsymmetrical change of these bases is sufficient to prevent the specific binding and to suppress the UASURA activity in vivo. In addition, we showed that UASURA contains a constitutive activating element which can stimulate transcription from a heterologous promoter independently of dihydroorotic acid and PPR1.


2017 ◽  
Vol 37 (15) ◽  
Author(s):  
Nunciada Salma ◽  
Jun S. Song ◽  
Akinori Kawakami ◽  
Suprabha P. Devi ◽  
Mehdi Khaled ◽  
...  

ABSTRACT Members of the MiT transcription factor family are pivotal regulators of several lineage-selective differentiation programs. We show that two of these, Tfeb and Tfe3, control the regulator of adipogenesis, peroxisome proliferator-activated receptor γ2 (Pparγ2). Knockdown of Tfeb or Tfe3 expression during in vitro adipogenesis causes dramatic downregulation of Pparγ2 expression as well as adipogenesis. Additionally, we found that these factors regulate Pparγ2 in mature adipocytes. Next, we demonstrated that Tfeb and Tfe3 act directly by binding to consensus E-boxes within the Pparγ transcriptional regulatory region. This transcriptional control also exists in vivo, as we discovered that wild-type mice in the fed state increased their expression of Tfe3, Tf3b, and Pparγ in white adipose tissue. Furthermore, Tfe3 knockout (Tfe3KO) mice in the fed state failed to upregulate Pparγ and the adiponectin gene, a Pparγ-dependent gene, confirming the in vivo role for Tfe3. Lastly, we found that blood glucose is elevated and serum adiponectin levels are suppressed in the Tfe3KO mice, indicating that the Tfe3/Tfeb/Pparγ2 axis may contribute to whole-body energy balance. Thus, we offer new insights into the upstream regulation of Pparγ by Tfe3/Tf3b and propose that targeting these transcription factors may offer opportunities to complement existing approaches for the treatment of diseases that have dysregulated energy metabolism.


2012 ◽  
Vol 446 (2) ◽  
pp. 203-212 ◽  
Author(s):  
Jenny L. Kerschner ◽  
Ann Harris

A critical cis-regulatory element for the CFTR (cystic fibrosis transmembrane conductance regulator) gene is located in intron 11, 100 kb distal to the promoter, with which it interacts. This sequence contains an intestine-selective enhancer and associates with enhancer signature proteins, such as p300, in addition to tissue-specific TFs (transcription factors). In the present study we identify critical TFs that are recruited to this element and demonstrate their importance in regulating CFTR expression. In vitro DNase I footprinting and EMSAs (electrophoretic mobility-shift assays) identified four cell-type-selective regions that bound TFs in vitro. ChIP (chromatin immunoprecipitation) identified FOXA1/A2 (forkhead box A1/A2), HNF1 (hepatocyte nuclear factor 1) and CDX2 (caudal-type homeobox 2) as in vivo trans-interacting factors. Mutation of their binding sites in the intron 11 core compromised its enhancer activity when measured by reporter gene assay. Moreover, siRNA (small interfering RNA)-mediated knockdown of CDX2 caused a significant reduction in endogenous CFTR transcription in intestinal cells, suggesting that this factor is critical for the maintenance of high levels of CFTR expression in these cells. The ChIP data also demonstrate that these TFs interact with multiple cis-regulatory elements across the CFTR locus, implicating a more global role in intestinal expression of the gene.


2009 ◽  
Vol 191 (11) ◽  
pp. 3717-3725 ◽  
Author(s):  
Alberto Danielli ◽  
Simona Romagnoli ◽  
Davide Roncarati ◽  
Lorenzo Costantino ◽  
Isabel Delany ◽  
...  

ABSTRACT Balancing metal uptake is essential for maintaining a proper intracellular metal concentration. Here, we report the transcriptional control exerted by the two metal-responsive regulators of Helicobacter pylori, Fur (iron-dependent ferric uptake regulator) and NikR (nickel-responsive regulator), on the three copies of the fecA genes present in this species. By monitoring the patterns of transcription throughout growth and in response to nickel, iron, and a metal chelator, we found that the expression of the three fecA genes is temporally regulated, responds to metals in different ways, and is selectively controlled by either one of the two regulators. fecA1 is expressed at a constant level throughout growth, and its expression is iron sensitive; the expression of fecA2 is mainly off, with minor expression coming up in late exponential phase. In contrast, the expression of fecA3 is maximal in early exponential phase, gradually decreases with time, and is repressed by nickel. The direct roles of Fur and NikR were studied both in vitro, by mapping the binding sites of each regulator on the promoter regions via DNase I footprinting analysis, and in vivo, by using primer extension analyses of the fecA transcripts in fur and nikR deletion strains. Overall, the results show that the expression of each fecA gene is finely tuned in response to metal availability, as well as during the bacterial growth phase, suggesting specific and dedicated functions for the three distinct FecA homologues.


1990 ◽  
Vol 10 (10) ◽  
pp. 5257-5270 ◽  
Author(s):  
A Roy ◽  
F Exinger ◽  
R Losson

Expression of the yeast pyrimidine biosynthetic gene, URA3, is induced three- to fivefold in response to uracil starvation, and this regulation is mediated by the transcriptional activator PPR1 (pyrimidine pathway regulator 1). In this study, we have analyzed the regulatory elements of the URA3 promoter by DNase I footprinting, using partially purified yeast cell extracts, by deletion mutagenesis, and by 5'-end mapping of RNA transcripts. Two DNA-binding activities have been detected, and at least four distinct cis-acting regions have been identified. A region rich in poly(dA-dT) serves as an upstream promoter element necessary for the basal level of URA3 expression. A 16-base-pair sequence with dyad symmetry acts acts as a uracil-controlled upstream activating site (UASURA) and shows a specific binding only with cell extracts from strains overproducing PPR1. This in vitro binding does not require dihydroorotic acid, the physiological inducer of URA3. The TATA region appears to be composed of two functionally distinct (constitutive and regulatory) elements. Two G + A-rich regions surrounding this TATA box bind an unidentified factor called GA-binding factor. The 5' copy, GA1, is involved in PPR1 induction and overlaps the constitutive TATA region. The 3' region, GA2, is necessary for maximal expression. Neither of these GA sequences acts as a UAS in a CYC1-lacZ context. The promoters of the unlinked but coordinately regulated URA1 and URA4 genes contain highly conserved copies of the UASURA sequence, which prompted us to investigate the effects of many point mutations within this UASURA sequence on PPR1-dependent binding. In this way, we have identified the most important residues of this binding site and found that a nonsymmetrical change of these bases is sufficient to prevent the specific binding and to suppress the UASURA activity in vivo. In addition, we showed that UASURA contains a constitutive activating element which can stimulate transcription from a heterologous promoter independently of dihydroorotic acid and PPR1.


2020 ◽  
Author(s):  
Abeer Babiker Idris ◽  
Einas Babiker Idris ◽  
Amany Eltayib Ataelmanan ◽  
Ali Elbagir Ali Mohamed ◽  
Bashir M. Osman Arbab ◽  
...  

Abstract Background: Helicobacter pylori (H. pylori) infects nearly half of the world’s population with a variation in incidence among different geographic regions. Genetic variants in the promoter regions of the IL1B gene can affect cytokine expression and creates a condition of hypoacidity which favors the survival and colonization of H. pylori. Therefore, the aim of this study was to characterize the polymorphic sites in the 5’- region [-687_+297] of IL1B in H. pylori infection using in silico tools.Results: A total of five nucleotide variations were detected in the 5’-regulatory region [-687_+297] of IL1B which led to the addition or alteration of transcription factor binding sites (TFBSs) or composite regulatory elements (CEs). Genotyping of IL1B-31 C>T revealed a significant association between -31T and susceptibility to H. pylori infection in the studied population (P=0.0363). Comparative analysis showed conservation rates of IL1B upstream [−368_+10] region above 70% in chimpanzee, rhesus monkey, a domesticated dog, cow and rat.Conclusions: In H. pylori-infected patients, three detected SNPs (-338, -155 and -31) located in the IL1B promoter were predicted to alter TFBSs and CE, which might affect the gene expression. These in silico predictions provide insight for further experimental in vitro and in vivo studies of the regulation of IL1B expression and its relationship to H. pylori infection. However, the recognition of regulatory motifs by computer algorithms is fundamental for understanding gene expression patterns.


2004 ◽  
Vol 287 (4) ◽  
pp. G822-G829 ◽  
Author(s):  
Svetlana M. Nabokina ◽  
Hamid M. Said

Transcriptional regulation of expression of the human thiamin transporter-2 (the product of the SLC19A3 gene) is unknown. In this study, we cloned the 5′-regulatory region of the human SLC19A3 gene (2,016 bp), identified the minimal promoter region required for basal activity, demonstrated a critical role for specific cis-regulatory elements in determining the promoter activity, and confirmed activity and physiological relevance of the cloned SLC19A3 promoter in vivo. With the use of transiently transfected human intestinal epithelial Caco-2 cells and 5′-deletion analysis, the minimal promoter region required for basal activity of the SLC19A3 promoter was found to be encoded in a sequence between −77 and +59 by using the start of transcription initiation as position 1. This minimal region was found to contain a number of putative cis-regulatory elements, with a critical role for a stimulating protein-1 (SP1)/GC-box binding site (at position −48/−45 bp) established by means of mutational analysis. With the use of EMSA and supershift assays, the binding of SP1 and SP3 to the minimal promoter region was also demonstrated. In transiently transfected Drosophila SL2 cells, both SP1 and SP3 transactivated the SLC19A3 minimal promoter in a dose-dependent manner and in combination demonstrated an additive stimulatory effect. Functionality of the full-length SLC19A3 promoter was confirmed in vivo in transgenic mice expressing the promoter-luciferase reporter gene. These studies report the first characterization of the SLC19A3 promoter in vitro and in vivo and demonstrate the importance of an SP1 cis-regulatory element in regulating promoter activity of this important human gene.


Sign in / Sign up

Export Citation Format

Share Document