scholarly journals Viral Ribonucleoprotein Complex Formation and Nucleolar-Cytoplasmic Relocalization of Nucleolin in Poliovirus-Infected Cells

1998 ◽  
Vol 72 (8) ◽  
pp. 6699-6709 ◽  
Author(s):  
Shelly Waggoner ◽  
Peter Sarnow

ABSTRACT The poliovirus 3′ noncoding region (3′NCR) is involved in the efficient synthesis of viral negative-stranded RNA molecules. A strong interaction between a 105-kDa host protein and the wild-type 3′NCR, but not with a replication-defective mutant 3′NCR, was detected. This 105-kDa protein was identified as nucleolin which predominantly resides in the nucleolus and has been proposed to function in the folding of rRNA precursor molecules. A functional role for nucleolin in viral genome amplification was examined in a cell-free extract which has been shown to support the assembly of infectious virus from virion RNA. At early times of viral gene expression, extracts depleted of nucleolin produced less infectious virus than extracts depleted of fibrillarin, another resident of the nucleolus, indicating a functional role of nucleolin in the early stages of the viral life cycle in this in vitro system. Immunofluorescence analysis of uninfected and infected cells showed a nucleocytoplasmic relocalization of nucleolin, but not of fibrillarin, in poliovirus-infected cells. Relocalization of nucleolin was not simply a consequence of virally induced inhibition of translation or transcription, because inhibitors of translation or transcription did not induce nucleolar-cytoplasmic relocalization of nucleolin. These findings suggest a novel virus-induced mechanism by which certain nucleolar proteins are selectively redistributed in infected cells.

2006 ◽  
Vol 80 (15) ◽  
pp. 7578-7589 ◽  
Author(s):  
Giada Frascaroli ◽  
Stefania Varani ◽  
Barbara Moepps ◽  
Christian Sinzger ◽  
Maria Paola Landini ◽  
...  

ABSTRACT Despite their role in innate and adaptive immunity, during human cytomegalovirus (HCMV) infection, monocytes are considered to be an important target of infection, a site of latency, and vehicles for virus dissemination. Since chemokine receptors play crucial roles in monocyte activation and trafficking, we investigated the effects of HCMV on their expression and function. By using endotheliotropic strains of HCMV, we obtained high rates (roughly 50%) of in vitro-infected monocytes but only restricted viral gene expression. At 24 h after infection, while the chemokine receptors CX3CR and CCR7 were unaffected, CCR1, CCR2, CCR5, and CXCR4 were downmodulated on the cell surface and retained intracellularly. Structural components of the viral particles, but not viral gene expression or soluble factors released from infected cells, accounted for the changed localization of the receptor molecules and for the block of chemokine-driven migration. HCMV-infected monocytes indeed became unresponsive to inflammatory and homeostatic chemokines, although the basal cell motility and responsiveness to N-formyl-Met-Leu-Phe were unaffected or slightly increased. The production of inflammatory mediators responsible for the recruitment of other immune cells was also hampered by HCMV. Whereas endothelial and fibroblast cells infected by HCMV efficiently recruited leukocytes, infected monocytes were unable to recruit lymphocytes, monocytes, and neutrophils. Our data further highlight the complex level of interference exerted by HCMV on the host immune system.


2014 ◽  
Vol 112 (1) ◽  
pp. E49-E55 ◽  
Author(s):  
Te Du ◽  
Zhiyuan Han ◽  
Guoying Zhou ◽  
Bernard Roizman

The key events in herpes simplex virus (HSV) infections are (i) replication at a portal of entry into the body modeled by infection of cultured cells; (ii) establishment of a latent state characterized by a sole latency-associated transcript and microRNAs (miRNAs) modeled in murine peripheral ganglia 30 d after inoculation; and (iii) reactivation from the latent state modeled by excision and incubation of ganglia in medium containing anti-NGF antibody for a timespan of a single viral replicative cycle. In this report, we examine the pattern of synthesis and accumulation of 18 HSV-1 miRNAs in the three models. We report the following: (i) H2-3P, H3-3P, H4-3P, H5-3P, H6-3P, and H7-5P accumulated in ganglia harboring latent virus. All but H4-3P were readily detected in productively infected cells, and most likely they originate from three transcriptional units. (ii) H8-5P, H15, H17, H18, H26, and H27 accumulated during reactivation. Of this group, only H26 and H27 could be detected in productively infected cells. (iii) Of the 18 we have examined, only 10 miRNAs were found to accumulate above background levels in productively infected cells. The disparity in the accumulation of miRNAs in cell culture and during reactivation may reflect differences in the patterns of regulation of viral gene expression during productive infection and during reactivation from the latent state.


2022 ◽  
Author(s):  
Bibiana Costa ◽  
Jennifer Becker ◽  
Tobias Krammer ◽  
Felix Mulenge ◽  
Verónica Durán ◽  
...  

Abstract Human cytomegalovirus (HCMV) is a widespread obligatory human pathogen causing life-threatening disease in immunocompromised hosts. Myeloid cells such as monocyte-derived dendritic cells (moDCs) are targets of HCMV. Here, we performed single-cell RNA sequencing, which revealed infection of most moDCs upon in vitro HCMV exposure, whereas only a fraction of them initiated viral gene expression. We identified three moDC subsets, of which CD1a−/CD86− cells showed the highest susceptibility. Upon HCMV entry, STING activation not only induced IFN-β, but also promoted viral gene expression. Upon progression of infection, IFN-β but not IFN-λ1 expression was inhibited. Similarly, ISG expression was initially induced and then shut off and thus allowed productive infection. Increased viral gene expression was associated with the induction of several pro- (RHOB, HSP1A1, DNAJB1) and anti-viral (RNF213, TNFSF10, IFI16) genes. Thus, moDC permissiveness to HCMV depends on complex interactions between virus sensing, regulation of IFNs/ISGs and viral gene expression.


2021 ◽  
Author(s):  
Beatriz Alvarado-Hernandez ◽  
Yanping Ma ◽  
Nishi R. Sharma ◽  
Vladimir Majerciak ◽  
Alexei Lobanov ◽  
...  

Kaposi’s sarcoma-associated herpesvirus (KSHV) ORF57 is an RNA-binding post-transcriptional regulator. We recently applied an affinity-purified anti-ORF57 antibody to conduct ORF57-CLIP (Cross-linking Immunoprecipitation) in combination with RNA-sequencing (CLIP-seq) and analyzed the genome-wide host RNA transcripts in association with ORF57 in BCBL-1 cells with lytic KSHV infection. Mapping of the CLIPed RNA reads to the human genome (GRCh37) revealed that most of the ORF57-associated RNA reads were from rRNAs. The remaining RNA reads mapped to several classes of host non-coding and protein-coding mRNAs. We found ORF57 binds and regulates expression of a subset of host lncRNAs, including LINC00324, LINC00355, and LINC00839 which are involved in cell growth. ORF57 binds snoRNAs responsible for 18S and 28S rRNA modifications, but does not interact with fibrillarin and NOP58. We validated ORF57 interactions with 67 snoRNAs by ORF57-RNA immunoprecipitation (RIP)-snoRNA-array assays. Most of the identified ORF57 rRNA binding sites (BS) overlap with the sites binding snoRNAs. We confirmed ORF57-snoRA71B RNA interaction in BCBL-1 cells by ORF57-RIP and Northern blot analyses using a 32 P-labeled oligo probe from the 18S rRNA region complementary to snoRA71B. Using RNA oligos from the rRNA regions that ORF57 binds for oligo pulldown-Western blot assays, we selectively verified ORF57 interactions with 5.8S and 18S rRNAs. Polysome profiling revealed that ORF57 associates with both monosomes and polysomes and its association with polysomes increases PABPC1 binding to, but prevent Ago2 from polysomes. Our data indicate a functional correlation with ORF57 binding and suppression of Ago2 activities for ORF57 promotion of gene expression. Significance As an RNA-binding protein, KSHV ORF57 regulates RNA splicing, stability, and translation and inhibits host innate immunity by blocking the formation of RNA granules in virus infected cells. In this report, ORF57 was found to interact many host non-coding RNAs, including lncRNAs, snoRNAs and ribosomal RNAs to carry out additional unknown functions. ORF57 binds a group of lncRNAs via the identified RNA motifs by ORF57 CLIP-seq to regulate their expression. ORF57 associates with snoRNAs independently of fibrillarin and NOP58 proteins, and with ribosomal RNA in the regions that commonly bind snoRNAs. Knockdown of fibrillarin expression decreases the expression of snoRNAs and CDK4, but not affect viral gene expression. More importantly, we found that ORF57 binds translationally active polysomes and enhances PABPC-1 but prevents Ago2 association with polysomes. Data provide a compelling evidence on how ORF57 in KSHV infected cells might regulate protein synthesis by blocking Ago2’s hostile activities on translation.


2019 ◽  
Vol 94 (4) ◽  
Author(s):  
Navneet Singh ◽  
David C. Tscharke

ABSTRACT During herpes simplex virus (HSV) latency, the viral genome is harbored in peripheral neurons in the absence of infectious virus but with the potential to restart infection. Advances in epigenetics have helped explain how viral gene expression is largely inhibited during latency. Paradoxically, at the same time, the view that latency is entirely silent has been eroding. This low-level noise has implications for our understanding of HSV latency and should not be ignored.


2007 ◽  
Vol 81 (8) ◽  
pp. 3949-3968 ◽  
Author(s):  
Sathish Sadagopan ◽  
Neelam Sharma-Walia ◽  
Mohanan Valiya Veettil ◽  
Hari Raghu ◽  
Ramu Sivakumar ◽  
...  

ABSTRACT In vitro Kaposi's sarcoma-associated herpesvirus (KSHV) infection of primary human dermal microvascular endothelial (HMVEC-d) cells and human foreskin fibroblast (HFF) cells is characterized by the induction of preexisting host signal cascades, sustained expression of latency-associated genes, transient expression of a limited number of lytic genes, and induction of several cytokines, growth factors, and angiogenic factors. Since NF-κB is a key molecule involved in the regulation of several of these factors, here, we examined NF-κB induction during de novo infection of HMVEC-d and HFF cells. Activation of NF-κB was observed as early as 5 to 15 min postinfection by KSHV, and translocation of p65-NF-κB into nuclei was detected by immunofluorescence assay, electrophoretic mobility shift assay, and p65 enzyme-linked immunosorbent assay. IκB phosphorylation inhibitor (Bay11-7082) reduced this activation significantly. A sustained moderate level of NF-κB induction was seen during the observed 72 h of in vitro KSHV latency. In contrast, high levels of ERK1/2 activation at earlier time points and a moderate level of activation at later times were observed. p38 mitogen-activated protein kinase was activated only at later time points, and AKT was activated in a cyclic manner. Studies with UV-inactivated KSHV suggested a role for virus entry stages in NF-κB induction and a requirement for KSHV viral gene expression in sustained induction. Inhibition of NF-κB did not affect target cell entry by KSHV but significantly reduced the expression of viral latent open reading frame 73 and lytic genes. KSHV infection induced the activation of several host transcription factors, including AP-1 family members, as well as several cytokines, growth factors, and angiogenic factors, which were significantly affected by NF-κB inhibition. These results suggest that during de novo infection, KSHV induces sustained levels of NF-κB to regulate viral and host cell genes and thus possibly regulates the establishment of latent infection.


2006 ◽  
Vol 80 (3) ◽  
pp. 1376-1384 ◽  
Author(s):  
Oscar Aparicio ◽  
Nerea Razquin ◽  
Mikel Zaratiegui ◽  
Iñigo Narvaiza ◽  
Puri Fortes

ABSTRACT Posttranscriptional gene silencing allows sequence-specific control of gene expression. Specificity is guaranteed by small antisense RNAs such as microRNAs (miRNAs) or small interfering RNAs (siRNAs). Functional miRNAs derive from longer double-stranded RNA (dsRNA) molecules that are cleaved to pre-miRNAs in the nucleus and are transported by exportin 5 (Exp 5) to the cytoplasm. Adenovirus-infected cells express virus-associated (VA) RNAs, which are dsRNA molecules similar in structure to pre-miRNAs. VA RNAs are also transported by Exp 5 to the cytoplasm, where they accumulate. Here we show that small RNAs derived from VA RNAs (svaRNAs), similar to miRNAs, can be found in adenovirus-infected cells. VA RNA processing to svaRNAs requires neither viral replication nor viral protein expression, as evidenced by the fact that svaRNA accumulation can be detected in cells transfected with VA sequences. svaRNAs are efficiently bound by Argonaute 2, the endonuclease of the RNA-induced silencing complex, and behave as functional siRNAs, in that they inhibit the expression of reporter genes with complementary sequences. Blocking svaRNA-mediated inhibition affects efficient adenovirus production, indicating that svaRNAs are required for virus viability. Thus, svaRNA-mediated silencing could represent a novel mechanism used by adenoviruses to control cellular or viral gene expression.


2002 ◽  
Vol 277 (51) ◽  
pp. 50190-50197 ◽  
Author(s):  
Devki Nandan ◽  
Taolin Yi ◽  
Martin Lopez ◽  
Crystal Lai ◽  
Neil E. Reiner

The human leishmaniasis are persistent infections of macrophages caused by protozoa of the genusLeishmania.The chronic nature of these infections is in part related to induction of macrophage deactivation, linked to activation of the Src homology 2 domain containing tyrosine phosphatase-1 (SHP-1) in infected cells. To investigate the mechanism of SHP-1 activation, lysates ofLeishmania donovanipromastigotes were subjected to SHP-1 affinity chromatography and proteins bound to the matrix were sequenced by mass spectrometry. This resulted in the identification ofLeishmaniaelongation factor-1α (EF-1α) as a SHP-1-binding protein. PurifiedLeishmaniaEF-1α, but not host cell EF-1α, bound directly to SHP-1in vitroleading to its activation. Three independent lines of evidence indicated thatLeishmaniaEF-1α may be exported from the phagosome thereby enabling targeting of host SHP-1. First, cytosolic fractions prepared from macrophages infected with [35S]methionine-labeled organisms containedLeishmaniaEF-1α. Second, confocal, fluorescence microscopy usingLeishmania-specific antisera detectedLeishmaniaEF-1α in the cytosol of infected cells. Third, co-immunoprecipitation showed thatLeishmaniaEF-1α was associated with SHP-1in vivoin infected cells. Finally, introduction of purifiedLeishmaniaEF-1α, but not the corresponding host protein into macrophages activated SHP-1 and blocked the induction of inducible nitric-oxide synthase expression in response to interferon-γ. Thus,LeishmaniaEF-1α is identified as a novel SHP-1-binding and activating protein that recapitulates the deactivated phenotype of infected macrophages.


Sign in / Sign up

Export Citation Format

Share Document