scholarly journals Cell-Specific Modulation of Papovavirus Replication by Tumor Suppressor Protein p53

2000 ◽  
Vol 74 (10) ◽  
pp. 4688-4697 ◽  
Author(s):  
Dina Lepik ◽  
Mart Ustav

ABSTRACT Small DNA tumor viruses like human papillomaviruses, simian virus 40, and adenoviruses modulate the activity of cellular tumor suppressor proteins p53 and/or pRB. These viruses replicate as nuclear multicopy extrachromosomal elements during the S phase of the cell cycle, and it has been suggested that inactivation of p53 and pRb is necessary for directing the cells to the S phase. Mouse polyomavirus (Py), however, modulates only the pRB protein activity without any obvious interference with the action of p53. We show here that Py replication was not suppressed by the p53 protein indeed in all tested different mouse cell lines. In addition, E1- and E2-dependent papillomavirus origin replication was insensitive to the action of p53 in mouse cells. We show that in hamster (Chinese hamster ovary) or human (osteosarcoma 143) cell lines the replication of both Py and papillomavirus origins was efficiently blocked by p53. The block of Py replication in human and hamster cells is not caused by the downregulation of large T-antigen expression. The deletion analysis of the p53 protein shows that the RPA binding, proline-rich regulatory, DNA-binding, and oligomerization domains are necessary for p53 action in both replication systems. These results indicate that in mouse cells the p53 protein could be inactive for the suppression of papovavirus replication.

1983 ◽  
Vol 3 (2) ◽  
pp. 290-296 ◽  
Author(s):  
L M Sompayrac ◽  
E G Gurney ◽  
K J Danna

We have isolated a simian virus 40 deletion mutant, F8dl, that lacks the sequences from 0.168 to 0.424 map units. The deleted sequences represent about one-half of the coding region for large T antigen. We present evidence here that F8dl is able to transform mouse cells in a focus assay and that cell lines derived from these foci exhibit fully transformed phenotypes, have integrated mutant genomes, and express mutant-encoded proteins. This result implies that the region of the simian virus 40 genome between 0.168 and 0.424 map units is not essential for the maintenance of transformation. In addition, we have found that cells fully transformed by F8dl produce a 53,000-dalton nonviral tumor antigen (p53) that is as unstable as the p53 of untransformed cells. From this result we infer that transformation by simian virus 40 does not require the stabilization of p53.


1983 ◽  
Vol 3 (2) ◽  
pp. 290-296
Author(s):  
L M Sompayrac ◽  
E G Gurney ◽  
K J Danna

We have isolated a simian virus 40 deletion mutant, F8dl, that lacks the sequences from 0.168 to 0.424 map units. The deleted sequences represent about one-half of the coding region for large T antigen. We present evidence here that F8dl is able to transform mouse cells in a focus assay and that cell lines derived from these foci exhibit fully transformed phenotypes, have integrated mutant genomes, and express mutant-encoded proteins. This result implies that the region of the simian virus 40 genome between 0.168 and 0.424 map units is not essential for the maintenance of transformation. In addition, we have found that cells fully transformed by F8dl produce a 53,000-dalton nonviral tumor antigen (p53) that is as unstable as the p53 of untransformed cells. From this result we infer that transformation by simian virus 40 does not require the stabilization of p53.


1985 ◽  
Vol 5 (4) ◽  
pp. 642-648 ◽  
Author(s):  
J A Small ◽  
D G Blair ◽  
S D Showalter ◽  
G A Scangos

Two plasmids, one containing the simian virus 40 (SV40) genome and the mouse metallothionein I gene and one containing the v-myc gene of avian myelocytomatosis virus MC29, were coinjected into mouse embryos. Of the 13 surviving mice, one, designated M13, contained both myc and SV40 sequences. This mouse developed a cranial bulge identified as a choroid plexus papilloma at 13 weeks and was subsequently sacrificed; tissue samples were taken for further analysis. Primary cell lines derived from these tissues contained both myc and SV40 DNA. No v-myc mRNA could be detected, although SV40 mRNA was present in all of the cell lines tested. T antigen also was expressed in all of the cell lines analyzed. These data suggest that SV40 expression was involved in the abnormalities of mouse M13 and was responsible for the transformed phenotype of the primary cell lines. Primary cell lines from this mouse were atypical in that the population rapidly became progressively more transformed with time in culture based on the following criteria: morphology, growth rate, and the ability to grow in soft agar and in serum-free medium. The data also suggest that factors present in the mouse regulated the ability of SV40 to oncogenically transform most cells and that in vitro culture of cells allowed them to escape those factors.


1990 ◽  
Vol 10 (1) ◽  
pp. 75-83
Author(s):  
Y Berko-Flint ◽  
S Karby ◽  
D Hassin ◽  
S Lavi

An in vitro system to study carcinogen-induced amplification in simian virus 40 (SV40)-transformed Chinese hamster (CO60) cells is described. SV40 amplification in this system resembled in many aspects the viral overreplication observed in drug-treated CO60 cells. Cytosolic extracts from N-methyl-N'-nitro-N-nitrosoguanidine-treated cells supported de novo DNA synthesis in the presence of excess exogenous T antigen and the SV40-containing plasmid pSVK1. The pattern of viral replication in these extracts was unique, since only the 2.4-kilobase-pair region spanning the origin was overreplicated, whereas distal sequences were not replicated significantly. Extracts from control cells supported only marginal levels of replication. In HeLa extracts, complete SV40 DNA molecules were replicated efficiently. The overreplication of the origin region in CO60 cell extracts was bidirectional and symmetrical. A fraction of the newly synthesized DNA molecules underwent a second round of replication, yielding MboI-sensitive fragments representing the 2.4-kilobase-pair region around the origin. The mechanisms controlling the amplification of the viral origin region, the nature of the cellular factors induced in the carcinogen-treated cells, and their putative association with general drug-induced SOS-like responses are discussed.


1986 ◽  
Vol 6 (4) ◽  
pp. 1204-1217
Author(s):  
P S Jat ◽  
C L Cepko ◽  
R C Mulligan ◽  
P A Sharp

We used a murine retrovirus shuttle vector system to construct recombinants capable of constitutively expressing the simian virus 40 (SV40) large T antigen and the polyomavirus large and middle T antigens as well as resistance to G418. Subsequently, these recombinants were used to generate cell lines that produced defective helper-free retroviruses carrying each of the viral oncogenes. These recombinant retroviruses were used to analyze the role of the viral genes in transformation of rat F111 cells. Expression of the polyomavirus middle T antigen alone resulted in cell lines that were highly tumorigenic, whereas expression of the polyomavirus large T resulted in cell lines that were highly tumorigenic, whereas expression of the polyomavirus large T resulted in cell lines that were unaltered by the criteria of morphology, anchorage-independent growth, and tumorigenicity. More surprisingly, SV40 large T-expressing cell lines were not tumorigenic despite the fact that they contained elevated levels of cellular p53 and had a high plating efficiency in soft agar. These results suggest that the SV40 large T antigen is not an acute transforming gene like the polyomavirus middle T antigen but is similar to the establishment genes such as myc and adenovirus EIa.


2000 ◽  
Vol 20 (16) ◽  
pp. 5986-5997 ◽  
Author(s):  
Beatrix A. Slomiany ◽  
Kenneth L. D'Arigo ◽  
Margaret M. Kelly ◽  
David T. Kurtz

ABSTRACT Using an inducible transcription system which allows the regulated expression of C/EBP isoforms in tissue culture cells, we have found that the ectopic expression of C/EBPα, at a level comparable to that found in normal liver tissue, has a pronounced antimitogenic effect in mouse L cells and NIH 3T3 cells. The inhibition of cell division by C/EBPα in mouse cells cannot be reversed by simian virus 40 T antigen, by oncogenic ras, or by adenovirus E1a protein. When expressed in thymidine kinase-deficient L cells or 3T3 cells, C/EBPα is detected in a protein complex which binds to the E2F binding sites found in the promoters of the genes for E2F-1 and dihydrofolate reductase (DHFR). Bacterially expressed C/EBPα has no affinity for these E2F sites, but when recombinant C/EBPα is added to nuclear extracts from mouse fibroblasts, a new E2F binding activity appears, which contains the C/EBPα protein. Using an E2F-DP1-responsive promoter linked to a reporter gene, it can be shown that C/EBPα directly inhibits the induction of this promoter by E2F-DP1 in transient-transfection assays. Furthermore, C/EBPα can be shown to inhibit the S-phase induction of the E2F and DHFR promoters in permanent cell lines. These findings delineate a straightforward mechanism for C/EBPα-mediated cell growth arrest through repression of E2F-DP-mediated S-phase transcription.


1989 ◽  
Vol 9 (7) ◽  
pp. 3093-3096 ◽  
Author(s):  
R L Radna ◽  
Y Caton ◽  
K K Jha ◽  
P Kaplan ◽  
G Li ◽  
...  

Simian virus 40 (SV40)-mediated transformation of human fibroblasts offers an experimental system for studying both carcinogenesis and cellular aging, since such transformants show the typical features of altered cellular growth but still have a limited life span in culture and undergo senescence. We have previously demonstrated (D. S. Neufeld, S. Ripley, A. Henderson, and H. L. Ozer, Mol. Cell. Biol. 7:2794-2802, 1987) that transformants generated with origin-defective mutants of SV40 show an increased frequency of overcoming senescence and becoming immortal. To clarify further the role of large T antigen, we have generated immortalized transformants by using origin-defective mutants of SV40 encoding a heat-labile large T antigen (tsA58 transformants). At a temperature permissive for large-T-antigen function (35 degrees C), the cell line AR5 had properties resembling those of cell lines transformed with wild-type SV40. However, the AR5 cells were unable to proliferate or form colonies at temperatures restrictive for large-T-antigen function (39 degrees C), demonstrating a continuous need for large T antigen even in immortalized human fibroblasts. Such immortal temperature-dependent transformants should be useful cell lines for the identification of other cellular or viral gene products that induce cell proliferation in human cells.


1984 ◽  
Vol 4 (4) ◽  
pp. 712-721 ◽  
Author(s):  
S Yasumoto

The regulation of transformed phenotypes was studied in newly isolated preadipose cell lines which were established after infection with simian virus 40 tsA58 dl2009. The clonal cell lines isolated exhibited most of the characteristics typical of transformed cells. The transformants, however, were able to differentiate into adipocytes in the presence of low calf serum (0.5%) and a combination of several hormones, including hydrocortisone and insulin. Treatment with insulin alone stimulated the growth of these cells but did not induce lipid accumulation without added hydrocortisone. The effect of hydrocortisone was accompanied by a restoration of growth control in the transformants after they reached high cell density. The blot hybridization analysis of cellular DNAs digested by restriction enzymes revealed that simian virus 40 genomes were integrated at multiple separate sites at which a head-to-tail oligomeric insertion took place. Large T antigen was synthesized in growing cells but was regulated at high cell density when cells were committed to differentiate by glucocorticoids. These results suggest that the glucocorticoid hydrocortisone is capable of restoring growth regulation at high cell densities to simian virus 40-transformed preadipose cell lines.


1985 ◽  
Vol 5 (5) ◽  
pp. 1043-1050 ◽  
Author(s):  
R E Lanford ◽  
C Wong ◽  
J S Butel

The transforming potential and oncogenicity of a simian virus 40 (SV40) mutant affecting T-antigen (T-ag), SV40(cT)-3, was examined in an effort to dissect T-ag functions in transformation. SV40(cT)-3 has a point mutation at nucleotide 4434 that abolishes the transport of T-ag to the nucleus but does not affect its association with the cell surface. Transfection-transformation assays were performed with primary cells and established cell lines of mouse and rat origin. The efficiency of transformation for established cell lines by SV40(cT)-3 was comparable to that of wild-type SV40, indicating that transformation of established cell lines can occur in the absence of detectable amounts of nuclear T-ag. Transformation of primary mouse embryo fibroblasts by SV40(cT)-3 was markedly influenced by culture conditions; the relative transforming frequency was dramatically reduced in assays involving focus formation in low serum concentrations or anchorage-independent growth. Immunofluorescence tests revealed that the transformed mouse embryo fibroblasts partially transport the mutant cT-ag to the cell nucleus. Transformed cell lines induced by SV40(cT)-3 did not differ in growth properties from wild-type transformants. SV40(cT)-3 was completely defective for the transformation of primary baby rat kidney cells, a primary cell type unable to transport the mutant T-ag to the nucleus. The intracellular localization of cellular protein p53 was found to mimic T-ag distribution in all the transformants analyzed. The mutant virus was weakly oncogenic in vivo: the induction of tumors in newborn hamsters by SV40(cT)-3 was reduced in incidence and delayed in appearance in comparison to wild-type SV40. These observations suggest that cellular transformation is regulated by both nuclear and surface-associated forms of SV40 T-ag.


Sign in / Sign up

Export Citation Format

Share Document