scholarly journals C/EBPα Inhibits Cell Growth via Direct Repression of E2F-DP-Mediated Transcription

2000 ◽  
Vol 20 (16) ◽  
pp. 5986-5997 ◽  
Author(s):  
Beatrix A. Slomiany ◽  
Kenneth L. D'Arigo ◽  
Margaret M. Kelly ◽  
David T. Kurtz

ABSTRACT Using an inducible transcription system which allows the regulated expression of C/EBP isoforms in tissue culture cells, we have found that the ectopic expression of C/EBPα, at a level comparable to that found in normal liver tissue, has a pronounced antimitogenic effect in mouse L cells and NIH 3T3 cells. The inhibition of cell division by C/EBPα in mouse cells cannot be reversed by simian virus 40 T antigen, by oncogenic ras, or by adenovirus E1a protein. When expressed in thymidine kinase-deficient L cells or 3T3 cells, C/EBPα is detected in a protein complex which binds to the E2F binding sites found in the promoters of the genes for E2F-1 and dihydrofolate reductase (DHFR). Bacterially expressed C/EBPα has no affinity for these E2F sites, but when recombinant C/EBPα is added to nuclear extracts from mouse fibroblasts, a new E2F binding activity appears, which contains the C/EBPα protein. Using an E2F-DP1-responsive promoter linked to a reporter gene, it can be shown that C/EBPα directly inhibits the induction of this promoter by E2F-DP1 in transient-transfection assays. Furthermore, C/EBPα can be shown to inhibit the S-phase induction of the E2F and DHFR promoters in permanent cell lines. These findings delineate a straightforward mechanism for C/EBPα-mediated cell growth arrest through repression of E2F-DP-mediated S-phase transcription.

1981 ◽  
Vol 1 (11) ◽  
pp. 1038-1047
Author(s):  
S Kawasaki ◽  
L Diamond ◽  
R Baserga

Sodium butyrate (3 mM) inhibited the entry into the S phase of quiescent 3T3 cells stimulated by serum, but had no effect on the accumulation of cellular ribonucleic acid. Simian virus 40 infection or manual microinjection of cloned fragments from the simian virus 40 A gene caused quiescent 3T3 cells to enter the S phase even in the presence of butyrate. NGI cells, a line of 3T3 cells transformed by simian virus 40, grew vigorously in 3 mM butyrate. Homokaryons were formed between G1 and S-phase 3T3 cells, Butyrate inhibited the induction of deoxyribonucleic acid synthesis that usually occurs in B1 nuclei when G1 cells are fused with S-phase cells. However, when G1 3T3 cells were fused with exponentially growing NGI cells, the 3T3 nuclei were induced to enter deoxyribonucleic acid synthesis. In tsAF8 cells, a ribonucleic acid polymerase II mutant that stops in the G1 phase of the cell cycle, no temporal sequence was demonstrated between the butyrate block and the temperature-sensitive block. These results confirm previous reports that certain virally coded proteins can induce cell deoxyribonucleic acid synthesis in the absence of cellular functions that are required by serum-stimulated cells. Our interpretation of these data is that butyrate inhibited cell growth by inhibiting the expression of genes required for the G0 leads to G1 leads to S transition and that the product of the simian virus 40 A gene overrode this inhibition by providing all of the necessary functions for the entry into the S phase.


1991 ◽  
Vol 11 (8) ◽  
pp. 4253-4265
Author(s):  
H G Wang ◽  
G Draetta ◽  
E Moran

We have studied the initial effects of adenovirus E1A expression on the retinoblastoma (RB) gene product in normal quiescent cells. Although binding of the E1A products to pRB could, in theory, make pRB phosphorylation unnecessary for cell cycle progression, we have found that the 12S wild-type E1A product is capable of inducing phosphorylation of pRB in normal quiescent cells. The induction of pRB phosphorylation correlates with E1A-mediated induction of p34cdc2 expression and kinase activity, consistent with the possibility that p34cdc2 is a pRB kinase. Expression of simian virus 40 T antigen induces similar effects. Induction of pRB phosphorylation is independent of the pRB binding activity of the E1A products; E1A domain 2 mutants do not bind detectable levels of pRB but remain competent to induce pRB phosphorylation and to activate cdc2 protein kinase expression and activity. Although the kinetics of induction are slower, domain 2 mutants induce wild-type levels of pRB phosphorylation and host cell DNA synthesis and yet fail to induce cell proliferation. These results imply that direct physical interaction between the RB and E1A products does not play a required role in the early stages of E1A-mediated cell cycle induction and that pRB phosphorylation is not, of itself, sufficient to allow quiescent cells to divide. These results suggest that the E1A products do not need to bind pRB in order to stimulate resting cells to enter the cell cycle. Indeed, a more important role of the RB binding activity of the E1A products may be to prevent dividing cells from returning to G0.


1995 ◽  
Vol 310 (2) ◽  
pp. 453-459 ◽  
Author(s):  
G S Dbaibo ◽  
R A Wolff ◽  
L M Obeid ◽  
Y A Hannun

The retinoblastoma protein (Rb) is a tumour suppressor that is activated by dephosphorylation the function of which appears to be mediated, at least partly, through the inhibition of several transcription factors, such as E2F. We have recently described sphingosine, a sphingolipid-breakdown product, as a potent and specific inducer of Rb dephosphorylation resulting in inhibition of cell growth and a specific arrest in the G0/G1 phase of the cell cycle. Here we examine the role of Rb and its interaction with E2F in mediating the effects of sphingosine on cell growth. Sphingosine potently inhibited growth of lymphoblastic leukaemic cells, Molt-4, at submicromolar concentrations but showed a 10-fold reduced potency in inhibiting growth of retinoblastoma cells, WERI-Rb-1, which lack functional Rb. In addition, sphingosine's ability to inhibit growth of mink lung epithelial cells was significantly attenuated in cells overexpressing simian virus 40 large T antigen which binds Rb and related proteins. Sphingosine treatment of Molt-4 cells, but not WERI-Rb-1 cells, resulted in the loss of the specific E2F bands produced by the interaction of E2F and its specific DNA sequence element on gel-shift assays. The concentration (submicromolar) and kinetics (4 h) of sphingosine treatment were identical with those required to induce Rb dephosphorylation. In addition, at similar concentrations, sphingosine caused c-myc down-regulation in Molt-4 cells starting at 6 h after treatment. These results demonstrate that activation of Rb by sphingosine leads to sequestration of E2F by the active (hypophosphorylated) form of Rb with the resultant loss of its DNA-binding and genetranscribing abilities. A functional Rb is required to mediate the specific effects of sphingosine on growth arrest.


2003 ◽  
Vol 23 (8) ◽  
pp. 2859-2870 ◽  
Author(s):  
Wenyi Wei ◽  
Wendy A. Jobling ◽  
Wen Chen ◽  
William C. Hahn ◽  
John M. Sedivy

ABSTRACT Human cells are more resistant to both immortalization and malignant transformation than rodent cells. Recent studies have established the basic genetic requirements for the transformation of human cells, but much of this work relied on the expression of transforming proteins derived from DNA tumor viruses. We constructed an isogenic panel of human fibroblast cell lines using a combination of gene targeting and ectopic expression of dominantly acting mutants of cellular genes. Abolition of p21 Cip1/Waf1 and p16 Ink4a functions prevented oncogenically activated Ras from inducing growth arrest and was sufficient for limited anchorage-independent growth but not tumorigenesis. Deletion of the tumor suppressor p53 combined with abolition of p16 Ink4a function failed to mimic the introduction of simian virus 40 large T antigen, indicating that large T antigen may target additional cellular functions. Ha-Ras and Myc cooperated only to a limited extent, but in the absence of Ras, Myc cooperated strongly with the simian virus 40 small t antigen to elicit aggressive anchorage-independent growth. The experiments reported here further define specific components of human transformation pathways.


2000 ◽  
Vol 74 (10) ◽  
pp. 4688-4697 ◽  
Author(s):  
Dina Lepik ◽  
Mart Ustav

ABSTRACT Small DNA tumor viruses like human papillomaviruses, simian virus 40, and adenoviruses modulate the activity of cellular tumor suppressor proteins p53 and/or pRB. These viruses replicate as nuclear multicopy extrachromosomal elements during the S phase of the cell cycle, and it has been suggested that inactivation of p53 and pRb is necessary for directing the cells to the S phase. Mouse polyomavirus (Py), however, modulates only the pRB protein activity without any obvious interference with the action of p53. We show here that Py replication was not suppressed by the p53 protein indeed in all tested different mouse cell lines. In addition, E1- and E2-dependent papillomavirus origin replication was insensitive to the action of p53 in mouse cells. We show that in hamster (Chinese hamster ovary) or human (osteosarcoma 143) cell lines the replication of both Py and papillomavirus origins was efficiently blocked by p53. The block of Py replication in human and hamster cells is not caused by the downregulation of large T-antigen expression. The deletion analysis of the p53 protein shows that the RPA binding, proline-rich regulatory, DNA-binding, and oligomerization domains are necessary for p53 action in both replication systems. These results indicate that in mouse cells the p53 protein could be inactive for the suppression of papovavirus replication.


2001 ◽  
Vol 75 (6) ◽  
pp. 2839-2847 ◽  
Author(s):  
Chunxiao Wu ◽  
Rupa Roy ◽  
Daniel T. Simmons

ABSTRACT We have previously mapped the single-stranded DNA binding domain of large T antigen to amino acid residues 259 to 627. By using internal deletion mutants, we show that this domain most likely begins after residue 301 and that the region between residues 501 and 550 is not required. To study the function of this binding activity, a series of single-point substitutions were introduced in this domain, and the mutants were tested for their ability to support simian virus 40 (SV40) replication and to bind to single-stranded DNA. Two replication-defective mutants (429DA and 460EA) were grossly impaired in single-stranded DNA binding. These two mutants were further tested for other biochemical activities needed for viral DNA replication. They bound to origin DNA and formed double hexamers in the presence of ATP. Their ability to unwind origin DNA and a helicase substrate was severely reduced, although they still had ATPase activity. These results suggest that the single-stranded DNA binding activity is involved in DNA unwinding. The two mutants were also very defective in structural distortion of origin DNA, making it likely that single-stranded DNA binding is also required for this process. These data show that single-stranded DNA binding is needed for at least two steps during SV40 DNA replication.


Sign in / Sign up

Export Citation Format

Share Document