scholarly journals Adenovirus DNA Binding Protein Interacts with the SNF2-Related CBP Activator Protein (SrCap) and Inhibits SrCap-Mediated Transcription

2001 ◽  
Vol 75 (21) ◽  
pp. 10033-10040 ◽  
Author(s):  
Xiequn Xu ◽  
Isaac Chackalaparampil ◽  
M. Alexandra Monroy ◽  
Maria T. Cannella ◽  
Elizabeth Pesek ◽  
...  

ABSTRACT The SNF2-related CBP activator protein, SrCap (pronounced “sir cap”), shares homology with the SNF2/SWI2 protein family. SrCap was cloned through its ability to bind CBP. SrCap can function as a CBP coactivator and can activate transcription in a reporter assay when expressed as a Gal-SrCap fusion protein. A monoclonal antibody raised against the carboxyl terminus of SrCap coimmunoprecipitates CBP/p300, supporting the model that SrCap is a CBP binding protein and that these proteins can be found together in a cellular protein complex. In addition, several cellular proteins are coimmunoprecipitated by the SrCap-specific antibody. Since adenovirus E1A proteins interact with CBP/p300 proteins, we examined what proteins could be copurified in a SrCap-specific coimmunoprecipitation assay from lysates of adenovirus-infected cells. While E1A proteins were not detected in this complex, to our surprise, we observed the presence of an infected-cell-specific band of 72 kDa, which we suspected might be the adenovirus DNA binding protein, DBP. The adenovirus DBP is a multifunctional protein involved in several aspects of the adenovirus life cycle, including an ability to modulate transcription. The identity of DBP was confirmed by DBP-specific Western blot analysis and by reimmunoprecipitating DBP from denatured SrCap-specific protein complexes. Using in vitro-translated DBP and SrCap proteins, we demonstrated that these proteins interact. To determine whether this interaction could affect SrCap-mediated transcription, we tested whether increasing amounts of DBP could modulate the Gal-SrCap transcription activity. We observed that DBP inhibited Gal-SrCap transcription activity in a dose-dependent manner. These data suggest a novel mechanism of adenovirus host cell control by which DBP binds to and inactivates SrCap, a member of the SNF2 chromatin-remodeling protein family.

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Antoine Hocher ◽  
Maria Rojec ◽  
Jacob B Swadling ◽  
Alexander Esin ◽  
Tobias Warnecke

Histones are a principal constituent of chromatin in eukaryotes and fundamental to our understanding of eukaryotic gene regulation. In archaea, histones are widespread but not universal: several lineages have lost histone genes. What prompted or facilitated these losses and how archaea without histones organize their chromatin remains largely unknown. Here, we elucidate primary chromatin architecture in an archaeon without histones, Thermoplasma acidophilum, which harbors a HU family protein (HTa) that protects part of the genome from micrococcal nuclease digestion. Charting HTa-based chromatin architecture in vitro, in vivo and in an HTa-expressing E. coli strain, we present evidence that HTa is an archaeal histone analog. HTa preferentially binds to GC-rich sequences, exhibits invariant positioning throughout the growth cycle, and shows archaeal histone-like oligomerization behavior. Our results suggest that HTa, a DNA-binding protein of bacterial origin, has converged onto an architectural role filled by histones in other archaea.


mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Begoña Monterroso ◽  
Silvia Zorrilla ◽  
Marta Sobrinos-Sanguino ◽  
Miguel Ángel Robles-Ramos ◽  
Carlos Alfonso ◽  
...  

ABSTRACTDivision ring formation at midcell is controlled by various mechanisms inEscherichia coli, one of them being the linkage between the chromosomal Ter macrodomain and the Z-ring mediated by MatP, a DNA binding protein that organizes this macrodomain and contributes to the prevention of premature chromosome segregation. Here we show that, during cell division, just before splitting the daughter cells, MatP seems to localize close to the cytoplasmic membrane, suggesting that this protein might interact with lipids. To test this hypothesis, we investigated MatP interaction with lipidsin vitro. We found that, when encapsulated inside vesicles and microdroplets generated by microfluidics, MatP accumulates at phospholipid bilayers and monolayers matching the lipid composition in theE. coliinner membrane. MatP binding to lipids was independently confirmed using lipid-coated microbeads and biolayer interferometry assays, which suggested that the recognition is mainly hydrophobic. Interaction of MatP with the lipid membranes also occurs in the presence of the DNA sequences specifically targeted by the protein, but there is no evidence of ternary membrane/protein/DNA complexes. We propose that the association of MatP with lipids may modulate its spatiotemporal localization and its recognition of other ligands.IMPORTANCEThe division of anE. colicell into two daughter cells with equal genomic information and similar size requires duplication and segregation of the chromosome and subsequent scission of the envelope by a protein ring, the Z-ring. MatP is a DNA binding protein that contributes both to the positioning of the Z-ring at midcell and the temporal control of nucleoid segregation. Our integratedin vivoandin vitroanalysis provides evidence that MatP can interact with lipid membranes reproducing the phospholipid mixture in theE. coliinner membrane, without concomitant recruitment of the short DNA sequences specifically targeted by MatP. This observation strongly suggests that the membrane may play a role in the regulation of the function and localization of MatP, which could be relevant for the coordination of the two fundamental processes in which this protein participates, nucleoid segregation and cell division.


1988 ◽  
Vol 170 (12) ◽  
pp. 5916-5918 ◽  
Author(s):  
R Aasland ◽  
J Coleman ◽  
A L Holck ◽  
C L Smith ◽  
C R Raetz ◽  
...  

2005 ◽  
Vol 331 (1) ◽  
pp. 357-362 ◽  
Author(s):  
Marina Roberti ◽  
Patricio Fernandez-Silva ◽  
Paola Loguercio Polosa ◽  
Erika Fernandez-Vizarra ◽  
Francesco Bruni ◽  
...  

2005 ◽  
Vol 11 (20) ◽  
pp. 7354-7361 ◽  
Author(s):  
Mahmut Yasen ◽  
Kazunori Kajino ◽  
Sayaka Kano ◽  
Hiroshi Tobita ◽  
Junji Yamamoto ◽  
...  

1990 ◽  
Vol 10 (9) ◽  
pp. 4957-4960 ◽  
Author(s):  
K C Ehrlich ◽  
M Ehrlich

Methylated DNA-binding protein (MDBP), a sequence-specific DNA-binding protein, was found to recognize more than 30 sites within an allele of the human apolipoprotein(a) gene. High plasma levels of apolipoprotein(a), a risk factor for atherosclerosis, have been correlated with genetically inherited lower-molecular-mass isoforms of this protein. MDBP might help down modulate the expression of the apolipoprotein(a) gene in a manner dependent on the length of a given allele of the gene and the number of MDBP sites in it.


Viruses ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 343 ◽  
Author(s):  
Jennifer Patterson-West ◽  
Melissa Arroyo-Mendoza ◽  
Meng-Lun Hsieh ◽  
Danielle Harrison ◽  
Morgan Walker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document