scholarly journals Noninvasive Detection of New Simian Immunodeficiency Virus Lineages in Captive Sooty Mangabeys: Ability To Amplify Virion RNA from Fecal Samples Correlates with Viral Load in Plasma

2003 ◽  
Vol 77 (3) ◽  
pp. 2214-2226 ◽  
Author(s):  
Binhua Ling ◽  
Mario L. Santiago ◽  
Sreelatha Meleth ◽  
Bobby Gormus ◽  
Harold M. McClure ◽  
...  

ABSTRACT The sooty mangabey (SM) (Cercocebus atys) is the natural host of a simian immunodeficiency virus, termed SIVsm, which gave rise to human immunodeficiency virus type 2. Data on the geographic distribution, prevalence, and genetic diversity of SIVsm in the wild remains limited. To address this issue, noninvasive strategies based on screening SM fecal and urine specimens for SIVsm-specific antibodies and virion RNA (vRNA) were developed, and the results were correlated with viral loads in plasma. Twenty-three SIVsm-infected and 27 uninfected SMs were evaluated. Time-matched urine, fecal and plasma samples were collected over a 2-month period from 16 captive naturally infected SMs. The remaining 7 infected and 27 uninfected SMs were sampled once. Each specimen was subjected to enhanced chemiluminescence-Western blot analysis and nested reverse transcriptase (RT) PCR. The results showed that urine was highly sensitive (96%) and specific (100%) for detection of SIVsm antibodies, while fecal detection was much less sensitive (16%). Conversely, vRNA detection was more sensitive in feces (50%) than in urine (2%) samples. Fecal-vRNA detection correlated with viral loads in plasma (P < 0.002). SMs with detectable fecal vRNA had a mean viral load in plasma of 458,006 copies/ml, while those with undetectable fecal vRNA had a mean viral load in plasma of 29,428 copies/ml. Moreover, for every log increase in the viral load in plasma, the odds of detecting virus in fecal samples increased 87-fold. Genetic diversity of SIVsm in the SM colony was characterized by sequencing partial gag (846 bp) and gp43 (439 bp) fragments. Surprisingly, four new SIVsm lineages were identified, two of which were initially detected by fecal RT-PCR. This study documents the suitability of noninvasive methods for the detection and molecular characterization of new SIV variants. These assays will be useful for studying the phylogeny and epidemiology of SIVsm infections in the wild, and they hold promise as tools for investigating natural SIV infections in endangered nonhuman primates.

2000 ◽  
Vol 74 (16) ◽  
pp. 7538-7547 ◽  
Author(s):  
Ousmane Madiagne Diop ◽  
Aïssatou Gueye ◽  
Marisa Dias-Tavares ◽  
Christopher Kornfeld ◽  
Abdourahmane Faye ◽  
...  

ABSTRACT In contrast to pathogenic human immunodeficiency virus and simian immunodeficiency virus (SIV) infections, chronic SIVagm infections in African green monkeys (AGMs) are characterized by persistently low peripheral and tissue viral loads that correlate with the lack of disease observed in these animals. We report here data on the dynamics of acute SIVagm infection in AGMs that exhibit remarkable similarities with viral replication patterns observed in peripheral blood during the first 2 weeks of pathogenic SIVmac infections. Plasma viremia was evident at day 3 postinfection (p.i.) in AGMs, and rapid viral replication led by days 7 to 10 to peak viremias characterized by high levels of antigenemia (1.2 to 5 ng of p27/ml of plasma), peripheral DNA viral load (104 to 105 DNA copies/106 peripheral blood mononuclear cells [PBMC]), and plasma RNA viral load (2 × 106 to 2 × 108 RNA copies/ml). The lymph node (LN) RNA and DNA viral load patterns were similar to those in blood, with peaks observed between day 7 and day 14. These values in LNs (ranging from 3 × 105 to 3 × 106 RNA copies/106LN cell [LNC] and 103 to 104 DNA copies/106 LNC) were at no time point higher than those observed in the blood. Both in LNs and in blood, rapid and significant decreases were observed in all infected animals after this peak of viral replication. Within 3 to 4 weeks p.i., antigenemia was no longer detectable and peripheral viral loads decreased to values similar to those characteristic of the chronic phase of infection (102to 103 DNA copies/106 PBMC and 2 × 103 to 2 × 105 RNA copies/ml of plasma). In LNs, viral loads declined to 5 × 101 to 103 DNA copies and 104 to 3 × 105 RNA copies per 106 LNC at day 28 p.i. and continued to decrease until day 84 p.i. (<10 to 3 × 104 RNA copies/106 LNC). Despite extensive viremia during primary infection, neither follicular hyperplasia nor CD8+ cell infiltration into LN germinal centers was detected. Altogether, these results indicate that the nonpathogenic outcome of SIVagm infection in its natural host is associated with a rapidly induced control of viral replication in response to SIVagm infection, rather than with a poorly replicating virus or a constitutive host genetic resistance to virus replication.


mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Dima A. Hammoud ◽  
Sanhita Sinharay ◽  
Swati Shah ◽  
William Schreiber-Stainthorp ◽  
Dragan Maric ◽  
...  

ABSTRACTThe exact cause of neurocognitive dysfunction in HIV-positive patients despite successful control of the infection in the periphery is not completely understood. One suggested mechanism is a vicious cycle of microglial activation and release of proinflammatory chemokines/cytokines that eventually leads to neuronal loss and dysfunction. However, the exact role of microglial activation in the earliest stages of the infection with high cerebrospinal fluid (CSF) viral loads (VL) is unclear. In this study, we imaged the translocator protein (TSPO), a mitochondrial membrane receptor known to be upregulated in activated microglia and macrophages, in rhesus macaques before and multiple times after inoculation with a neurotropic simian immunodeficiency virus (SIV) strain (SIVsm804E), using 18F-DPA714 positron emission tomography (PET). The whole-brain standardized uptake values of TSPO at equilibrium reflecting total binding (SUVT) and binding potentials (BPND) were calculated and correlated with CSF and serum markers of disease, and a corresponding postmortem immunostaining analysis was also performed. SUVTwas found to be inversely correlated with both CSF VL and monocyte chemoattractant protein 1 (MCP-1) levels. In SIV-infected macaques with very high CSF VL at necropsy (>106copies/ml), we found decreased TSPO binding by PET, and this was supported by immunostaining which showed glial and neuronal apoptosis rather than microglial activation. On the other hand, with only moderately elevated CSF VL (∼104copies/ml), we found increased TSPO binding as well as focal and diffuse microglial activation on immunostaining. Our results in the SIV-infected macaque model provide insights into the relationship between HIV neuropathology and CSF VL at various stages of the disease.IMPORTANCENeurological and cognitive problems are a common complication of HIV infection and are prevalent even in treated individuals. Although the molecular processes underlying brain involvement with HIV are not completely understood, inflammation is suspected to play a significant role. Our work presents anin vivoassessment of neuroinflammation in an animal model of HIV, the simian immunodeficiency virus (SIV)-infected rhesus macaque. Using positron emission tomography (PET) imaging, we identified changes in brain inflammation after inoculation with SIV over time. Interestingly, we found decreased binding of the PET ligand in the presence of very high cerebrospinal fluid (CSF) viral loads. These findings were supported by immunostaining which showed marked glial loss instead of inflammation. This study provides insight into glial and neuronal changes associated with very high CSF viral load and could reflect similar changes occurring in HIV-infected patients.


1989 ◽  
Vol 18 (3-4) ◽  
pp. 261-269
Author(s):  
Yen Li ◽  
Yathirajulu Naidu ◽  
Patricia Fultz ◽  
Muthiah D. Daniel ◽  
Ronald C. Desrosiers

2016 ◽  
Vol 90 (24) ◽  
pp. 11087-11095 ◽  
Author(s):  
Fan Wu ◽  
Andrea Kirmaier ◽  
Ellen White ◽  
Ilnour Ourmanov ◽  
Sonya Whitted ◽  
...  

ABSTRACT TRIM5α polymorphism limits and complicates the use of simian immunodeficiency virus (SIV) for evaluation of human immunodeficiency virus (HIV) vaccine strategies in rhesus macaques. We previously reported that the TRIM5α-sensitive SIV from sooty mangabeys (SIVsm) clone SIVsmE543-3 acquired amino acid substitutions in the capsid that overcame TRIM5α restriction when it was passaged in rhesus macaques expressing restrictive TRIM5α alleles. Here we generated TRIM5α-resistant clones of the related SIVsmE660 strain without animal passage by introducing the same amino acid capsid substitutions. We evaluated one of the variants in rhesus macaques expressing permissive and restrictive TRIM5α alleles. The SIVsmE660 variant infected and replicated in macaques with restrictive TRIM5α genotypes as efficiently as in macaques with permissive TRIM5α genotypes. These results demonstrated that mutations in the SIV capsid can confer SIV resistance to TRIM5α restriction without animal passage, suggesting an applicable method to generate more diverse SIV strains for HIV vaccine studies. IMPORTANCE Many strains of SIV from sooty mangabey monkeys are susceptible to resistance by common rhesus macaque TRIM5α alleles and result in reduced virus acquisition and replication in macaques that express these restrictive alleles. We previously observed that spontaneous variations in the capsid gene were associated with improved replication in macaques, and the introduction of two amino acid changes in the capsid transfers this improved replication to the parent clone. In the present study, we introduced these mutations into a related but distinct strain of SIV that is commonly used for challenge studies for vaccine trials. These mutations also improved the replication of this strain in macaques with the restrictive TRIM5α genotype and thus will eliminate the confounding effects of TRIM5α in vaccine studies.


1999 ◽  
Vol 73 (5) ◽  
pp. 4443-4446 ◽  
Author(s):  
Donald L. Sodora ◽  
Kristine E. Sheridan ◽  
Preston A. Marx ◽  
Ruth I. Connor

ABSTRACT Rhesus macaques immunized with simian immunodeficiency virus SIVmac239Δnef but not protected from SIVmac251 challenge were studied to determine the genetic and biological characteristics of the breakthrough viruses. Assessment of SIV genetic diversity (env V1-V2) revealed a reduction in the number of viral species in the immunized, unprotected macaques, compared to the number in nonimmunized controls. However, no evidence for selection of a specific V1-V2 genotype was observed, and biologically cloned isolates from the animals with breakthrough virus were similar with respect to replication kinetics and coreceptor use in vitro.


2012 ◽  
Vol 86 (18) ◽  
pp. 9583-9589 ◽  
Author(s):  
Kathryn E. Stephenson ◽  
Hualin Li ◽  
Bruce D. Walker ◽  
Nelson L. Michael ◽  
Dan H. Barouch

A comprehensive vaccine for human immunodeficiency virus type 1 (HIV-1) would block HIV-1 acquisition as well as durably control viral replication in breakthrough infections. Recent studies have demonstrated that Env is required for a vaccine to protect against acquisition of simian immunodeficiency virus (SIV) in vaccinated rhesus monkeys, but the antigen requirements for virologic control remain unclear. Here, we investigate whether CD8+T lymphocytes from vaccinated rhesus monkeys mediate viral inhibitionin vitroand whether these responses predict virologic control following SIV challenge. We observed that CD8+lymphocytes from 23 vaccinated rhesus monkeys inhibited replication of SIVin vitro. Moreover, the magnitude of inhibition prior to challenge was inversely correlated with set point SIV plasma viral loads after challenge. In addition, CD8 cell-mediated viral inhibition in vaccinated rhesus monkeys correlated significantly with Gag-specific, but not Pol- or Env-specific, CD4+and CD8+T lymphocyte responses. These findings demonstrate thatin vitroviral inhibition following vaccination largely reflects Gag-specific cellular immune responses and correlates within vivovirologic control following infection. These data suggest the importance of including Gag in an HIV-1 vaccine in which virologic control is desired.


Viruses ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 697 ◽  
Author(s):  
Julia Frankenfeld ◽  
Theres Meili ◽  
Marina Meli ◽  
Barbara Riond ◽  
A. Helfer-Hungerbuehler ◽  
...  

Feline immunodeficiency virus (FIV) is a lentivirus of domestic cats worldwide. Diagnosis usually relies on antibody screening by point-of-care tests (POCT), e.g., by enzyme-linked immunosorbent assays (ELISA), and confirmation using Western blot (WB). We increasingly observed ELISA-negative, WB-positive samples and aimed to substantiate these observations using 1194 serum/plasma samples collected from 1998 to 2019 primarily from FIV-suspect cats. While 441 samples tested positive and 375 tested negative by ELISA and WB, 81 samples had discordant results: 70 were false ELISA-negative (WB-positive) and 11 were false ELISA-positive (WB-negative); 297 ambiguous results were not analyzed further. The diagnostic sensitivity and specificity of the ELISA (82% and 91%, respectively) were lower than those reported in 1995 (98% and 97%, respectively). The diagnostic efficiency was reduced from 97% to 86%. False ELISA-negative samples originated mainly (54%) from Switzerland (1995: 0%). Sixty-four false ELISA-negative samples were available for POCT (SNAPTM/WITNESSR): five were POCT-positive. FIV RT-PCR was positive for two of these samples and was weakly positive for two ELISA- and POCT-negative samples. Low viral loads prohibited sequencing. Our results suggest that FIV diagnosis has become more challenging, probably due to increasing travel by cats and the introduction of new FIV isolates not recognized by screening assays.


Sign in / Sign up

Export Citation Format

Share Document