scholarly journals RNA and Protein Requirements for Incorporation of the Pol Protein into Foamy Virus Particles

2005 ◽  
Vol 79 (11) ◽  
pp. 7005-7013 ◽  
Author(s):  
Katrin Peters ◽  
Tatiana Wiktorowicz ◽  
Martin Heinkelein ◽  
Axel Rethwilm

ABSTRACT Foamy viruses (FVs) generate their Pol protein precursor molecule independently of the Gag protein from a spliced mRNA. This mode of expression raises the question of the mechanism of Pol protein incorporation into the viral particle (capsid). We previously showed that the packaging of (pre)genomic RNA is essential for Pol encapsidation (M. Heinkelein, C. Leurs, M. Rammling, K. Peters, H. Hanenberg, and A. Rethwilm, J. Virol. 76:10069-10073, 2002). Here, we demonstrate that distinct sequences in the RNA, which we termed Pol encapsidation sequences (PES), are required to incorporate Pol protein into the FV capsid. Two PES were found, which are contained in the previously identified cis-acting sequences necessary to transfer an FV vector. One PES is located in the U5 region of the 5′ long terminal repeat and one at the 3′ end of the pol gene region. Neither element has any significant effect on RNA packaging. However, deletion of either PES resulted in a significant reduction in Pol encapsidation. On the protein level, we show that only the Pol precursor, but not the individual reverse transcriptase (RT) and integrase (IN) subunits, is incorporated into FV particles. However, enzymatic activities of the protease (PR), RT, or IN are not required. Our results strengthen the view that in FVs, (pre)genomic RNA functions as a bridging molecule between Gag and Pol precursor proteins.

2009 ◽  
Vol 90 (2) ◽  
pp. 481-487 ◽  
Author(s):  
Tatiana Wiktorowicz ◽  
Katrin Peters ◽  
Nicole Armbruster ◽  
Andre F. Steinert ◽  
Axel Rethwilm

In contrast to other retroviruses, foamy viruses (FVs) generate their Pol protein precursor independently of the Gag protein from a spliced mRNA. The exact mechanism of Pol protein incorporation into the viral capsid is poorly understood. Previously, we showed that Pol encapsidation critically depends on the packaging of (pre-) genomic RNA and identified two distinct signals within the cis-acting sequences (CASI and CASII), Pol encapsidation sequences (PESI and PESII), which are required for Pol capsid incorporation. Here, we investigated whether the presence of PESI and PESII in an FV vector is sufficient for Pol encapsidation and whether the rather extended CASII element can be shortened without loss of functionality. Our results indicate that (i) the presence of PESI and II are not sufficient for Pol encapsidation, (ii) prototype FV vectors with a shortened CASII element retain Pol incorporation and full functionality, in particular upon transducing fibroblasts and primary human mesenchymal stem cells, (iii) the presence of the central poly purine tract significantly increased the transduction rates of FV vectors and (iv) Pol encapsidation and RNA packaging can be clearly separated. In essence, we designed a new FV vector that bears approximately 850 bp less of CAS than previously established vectors and is fully functional when analysed to transduce cell lines and primary human cells.


2004 ◽  
Vol 78 (17) ◽  
pp. 9423-9430 ◽  
Author(s):  
Carolyn R. Stenbak ◽  
Maxine L. Linial

ABSTRACT Foamy viruses (FV) are complex retroviruses that possess several unique features that distinguish them from all other retroviruses. FV Gag and Pol proteins are expressed independently of one another, and both proteins undergo single cleavage events. Thus, the mature FV Gag protein does not consist of the matrix, capsid, and nucleocapsid (NC) proteins found in orthoretroviruses, and the putative NC domain of FV Gag lacks the hallmark Cys-His motifs or I domains. As there is no Gag-Pol fusion protein, the mechanism of Pol packaging is different but unknown. FV RNA packaging is not well understood either. The C terminus of FV Gag has three glycine-arginine motifs (GR boxes), the first of which has been shown to have nucleic acid binding properties in vitro. The role of these GR boxes in RNA packaging and Pol packaging was investigated with a series of Gag C-terminal truncation mutants. GR box 1 was found to be the major determinant of RNA packaging, but all three GR boxes were required to achieve wild-type levels of RNA packaging. In addition, Pol was packaged in the absence of GR box 3, but GR boxes 1 and 2 were required for efficient Pol packaging. Interestingly, the Gag truncation mutants demonstrated decreased Pol expression levels as well as defects in Pol cleavage. Thus, the C terminus of FV Gag was found to be responsible for RNA packaging, as well as being involved in the expression, cleavage, and incorporation of the Pol protein.


1998 ◽  
Vol 72 (3) ◽  
pp. 2177-2182 ◽  
Author(s):  
Donald L. Holzschu ◽  
Mari A. Delaney ◽  
Randall W. Renshaw ◽  
James W. Casey

ABSTRACT We have determined the complete nucleotide sequence of a replication-competent clone of bovine foamy virus (BFV) and have quantitated the amount of splice pol mRNA processed early in infection. The 544-amino-acid Gag protein precursor has little sequence similarity with its primate foamy virus homologs, but the putative nucleocapsid (NC) protein, like the primate NCs, contains the three glycine-arginine-rich regions that are postulated to bind genomic RNA during virion assembly. The BFV gag and polopen reading frames overlap, with pro and polin the same translational frame. As with the human foamy virus (HFV) and feline foamy virus, we have detected a spliced pol mRNA by PCR. Quantitatively, this mRNA approximates the level of full-length genomic RNA early in infection. The integrase (IN) domain of reverse transcriptase does not contain the canonical HH-CC zinc finger motif present in all characterized retroviral INs, but it does contain a nearby histidine residue that could conceivably participate as a member of the zinc finger. The env gene encodes a protein that is over 40% identical in sequence to the HFV Env. By comparison, the Gag precursor of BFV is predicted to be only 28% identical to the HFV protein.


2008 ◽  
Vol 82 (21) ◽  
pp. 10803-10810 ◽  
Author(s):  
Eun-Gyung Lee ◽  
Maxine L. Linial

ABSTRACT Foamy viruses (FV) differ from orthoretroviruses in many aspects of their replication cycle. A major difference is in the mode of Pol expression, regulation, and encapsidation into virions. Orthoretroviruses synthesize Pol as a Gag-Pol fusion protein so that Pol is encapsidated into virus particles through Gag assembly domains. However, as FV express Pol independently of Gag from a spliced mRNA, packaging occurs through a distinct mechanism. FV genomic RNA contains cis-acting sequences that are required for Pol packaging, suggesting that Pol binds to RNA for its encapsidation. However, it is not known whether Gag is directly involved in Pol packaging. Previously our laboratory showed that sequences flanking the three glycine-arginine-rich (GR) boxes at the C terminus of FV Gag contain domains important for RNA packaging and Pol expression, cleavage, and packaging. We have now shown that both deletion and substitution mutations in the first GR box (GR1) prevented neither the assembly of particles with wild-type density nor packaging of RNA genomes but led to a defect in Pol packaging. Site-directed mutagenesis of GR1 indicated that the clustered positively charged amino acids in GR1 play important roles in Pol packaging. Our results suggest that GR1 contains a Pol interaction domain and that a Gag-Pol complex is formed and binds to RNA for incorporation into virions.


1999 ◽  
Vol 73 (4) ◽  
pp. 3023-3031 ◽  
Author(s):  
Jane F. Kaye ◽  
Andrew M. L. Lever

ABSTRACT Retroviral RNA encapsidation is a highly selective process mediated through recognition by the viral Gag proteins of cis-acting RNA packaging signals in genomic RNA. This RNA species is also translated, producing the viral gag gene products. The relationship between these processes is poorly understood. Unlike that of human immunodeficiency virus type 1 (HIV-1), the dominant packaging signal of HIV-2 is upstream of the major splice donor and present in both unspliced and spliced viral RNAs, necessitating additional mechanisms for preferential packaging of unspliced genomic RNA. Encapsidation studies of a series of HIV-2-based vectors showed efficient packaging of viral genomes only if the unspliced, encapsidated RNA expressed full-length Gag protein, including functional nucleocapsid. We propose a novel encapsidation initiation mechanism, providing selectivity, in which unspliced HIV-2 RNA is captured in cis by the Gag protein. This has implications for the use of HIV-2 and other lentiviruses as vectors.


2020 ◽  
Vol 16 (12) ◽  
pp. e1009146
Author(s):  
Rebecca Chandler-Bostock ◽  
Carlos P. Mata ◽  
Richard J. Bingham ◽  
Eric C. Dykeman ◽  
Bo Meng ◽  
...  

Picornaviruses are important viral pathogens, but despite extensive study, the assembly process of their infectious virions is still incompletely understood, preventing the development of anti-viral strategies targeting this essential part of the life cycle. We report the identification, via RNA SELEX and bioinformatics, of multiple RNA sites across the genome of a typical enterovirus, enterovirus-E (EV-E), that each have affinity for the cognate viral capsid protein (CP) capsomer. Many of these sites are evolutionarily conserved across known EV-E variants, suggesting they play essential functional roles. Cryo-electron microscopy was used to reconstruct the EV-E particle at ~2.2 Å resolution, revealing extensive density for the genomic RNA. Relaxing the imposed symmetry within the reconstructed particles reveals multiple RNA-CP contacts, a first for any picornavirus. Conservative mutagenesis of the individual RNA-contacting amino acid side chains in EV-E, many of which are conserved across the enterovirus family including poliovirus, is lethal but does not interfere with replication or translation. Anti-EV-E and anti-poliovirus aptamers share sequence similarities with sites distributed across the poliovirus genome. These data are consistent with the hypothesis that these RNA-CP contacts are RNA Packaging Signals (PSs) that play vital roles in assembly and suggest that the RNA PSs are evolutionarily conserved between pathogens within the family, augmenting the current protein-only assembly paradigm for this family of viruses.


1999 ◽  
Vol 73 (8) ◽  
pp. 6387-6393 ◽  
Author(s):  
David N. Baldwin ◽  
Maxine L. Linial

ABSTRACT Human foamy virus (HFV) is the prototype member of the spumaviruses. While similar in genomic organization to other complex retroviruses, foamy viruses share several features with their more distant relatives, the hepadnaviruses such as human hepatitis B virus (HBV). Both HFV and HBV express their Pol proteins independently from the structural proteins. However unlike HBV, Pol is not required for assembly of HFV core particles or for packaging of viral RNA. These results suggest that the assembly of Pol into HFV particles must occur by a mechanism different from those used by retroviruses and hepadnaviruses. We have examined possible mechanisms for HFV Pol incorporation, including the role of proteolysis in assembly of Pol and the role of initiation of reverse transcription. We have found that proteolytic activity is not required for Pol incorporation. p4 Gag and the residues immediately upstream of the cleavage site in Gag are also not important. Deletion of the primer binding site had no effect on assembly, ruling out early steps of reverse transcription in the process of Pol incorporation.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Mauricio Comas-Garcia ◽  
Tomas Kroupa ◽  
Siddhartha AK Datta ◽  
Demetria P Harvin ◽  
Wei-Shau Hu ◽  
...  

The principal structural component of a retrovirus particle is the Gag protein. Retroviral genomic RNAs contain a ‘packaging signal’ (‘Ψ') and are packaged in virus particles with very high selectivity. However, if no genomic RNA is present, Gag assembles into particles containing cellular mRNA molecules. The mechanism by which genomic RNA is normally selected during virus assembly is not understood. We previously reported (<xref ref-type="bibr" rid="bib9">Comas-Garcia et al., 2017</xref>) that at physiological ionic strength, recombinant HIV-1 Gag binds with similar affinities to RNAs with or without Ψ, and proposed that genomic RNA is selectively packaged because binding to Ψ initiates particle assembly more efficiently than other RNAs. We now present data directly supporting this hypothesis. We also show that one or more short stretches of unpaired G residues are important elements of Ψ; Ψ may not be localized to a single structural element, but is probably distributed over >100 bases.


1999 ◽  
Vol 80 (8) ◽  
pp. 2003-2009 ◽  
Author(s):  
Claire L. Hill ◽  
Paul D. Bieniasz ◽  
Myra O. McClure

The Spumaviridae (foamy viruses) are increasingly being considered as potential vectors for gene therapy, yet little has been documented of their basic cell biology. This study demonstrates that human foamy virus (HFV) has a broad tropism and that the receptor for HFV is expressed not only on many mammalian, but on avian and reptilian cells. Receptor interference assays using an envelope-expressing cell line and a vesicular stomatitis virus/HFV pseudotype virus demonstrate that the cellular receptor is common to all primate members of the genus. The majority of foamy virus particles assemble and remain sequestered intracellularly. A rapid and quantitative method of assaying foamy virus infectivity by reverse transcriptase activity facilitates the use of classical protocols to increase infectious virus titres in vitro to ⩾106 TCID/ml.


Sign in / Sign up

Export Citation Format

Share Document