scholarly journals Attenuating Mutations of the Matrix Gene of Influenza A/WSN/33 Virus

2005 ◽  
Vol 79 (3) ◽  
pp. 1918-1923 ◽  
Author(s):  
Teresa Liu ◽  
Zhiping Ye

ABSTRACT The matrix protein (M1) of influenza virus plays an essential role in viral replication. Our previous studies have shown that basic amino acids 101RKLKR105 of M1 are involved in RNP binding and nuclear localization. For the present work, the functions of 101RKLKR105 were studied by introducing mutations into the M gene of influenza virus A/WSN/33 by reverse genetic methods. Individual substitution, R101S or R105S, had a minimal effect on viral replication. In contrast, the double mutation R101S-R105S was synergistic and resulted in temperature sensitivity reflected by reduced viral replication at a restrictive temperature. To investigate the in vivo effect on infection, BALB/c mice were infected with either A/WSN/33 wild-type (Wt) or mutant viruses and assessed for signs of illness, viral replication in the lungs, and survival rates. The results from mouse studies indicated that the R101S-R105S double mutant virus was strongly attenuated, while single mutant viruses R101S and R105S were minimally attenuated compared to A/WSN33 Wt under the same conditions. In challenge studies, mice immunized by infection with R101S-R105S were fully protected from lethal challenge with A/WSN/33. The replication and attenuating properties of R101S-R105S suggest its potential in development of live influenza virus vaccines.

2014 ◽  
Vol 143 (4) ◽  
pp. 772-780 ◽  
Author(s):  
H. MOON ◽  
M. HONG ◽  
J. K. KIM ◽  
B. SEON ◽  
W. NA ◽  
...  

SUMMARYAfter an outbreak of pandemic influenza A/H1N1 (pH1N1) virus, we had previously reported the emergence of a recombinant canine influenza virus (CIV) between the pH1N1 virus and the classic H3N2 CIV. Our ongoing routine surveillance isolated another reassortant H3N2 CIV carrying the matrix gene of the pH1N1 virus from 2012. The infection dynamics of this H3N2 CIV variant (CIV/H3N2mv) were investigated in dogs and ferrets via experimental infection and transmission. The CIV/H3N2mv-infected dogs and ferrets produced typical symptoms of respiratory disease, virus shedding, seroconversion, and direct-contact transmissions. Although indirect exposure was not presented for ferrets, CIV/H3N2mv presented higher viral replication in MDCK cells and more efficient transmission was observed in ferrets compared to classic CIV H3N2. This study demonstrates the effect of reassortment of the M gene of pH1N1 in CIV H3N2.


2019 ◽  
Vol 93 (13) ◽  
Author(s):  
Nancy Hom ◽  
Lauren Gentles ◽  
Jesse D. Bloom ◽  
Kelly K. Lee

ABSTRACTInfluenza A virus matrix protein M1 is involved in multiple stages of the viral infectious cycle. Despite its functional importance, our present understanding of this essential viral protein is limited. The roles of a small subset of specific amino acids have been reported, but a more comprehensive understanding of the relationship between M1 sequence, structure, and virus fitness remains elusive. In this study, we used deep mutational scanning to measure the effect of every amino acid substitution in M1 on viral replication in cell culture. The map of amino acid mutational tolerance we have generated allows us to identify sites that are functionally constrained in cell culture as well as sites that are less constrained. Several sites that exhibit low tolerance to mutation have been found to be critical for M1 function and production of viable virions. Surprisingly, significant portions of the M1 sequence, especially in the C-terminal domain, whose structure is undetermined, were found to be highly tolerant of amino acid variation, despite having extremely low levels of sequence diversity among natural influenza virus strains. This unexpected discrepancy indicates that not all sites in M1 that exhibit high sequence conservation in nature are under strong constraint during selection for viral replication in cell culture.IMPORTANCEThe M1 matrix protein is critical for many stages of the influenza virus infection cycle. Currently, we have an incomplete understanding of this highly conserved protein’s function and structure. Key regions of M1, particularly in the C terminus of the protein, remain poorly characterized. In this study, we used deep mutational scanning to determine the extent of M1’s tolerance to mutation. Surprisingly, nearly two-thirds of the M1 sequence exhibits a high tolerance for substitutions, contrary to the extremely low sequence diversity observed across naturally occurring M1 isolates. Sites with low mutational tolerance were also identified, suggesting that they likely play critical functional roles and are under selective pressure. These results reveal the intrinsic mutational tolerance throughout M1 and shape future inquiries probing the functions of this essential influenza A virus protein.


2019 ◽  
Vol 7 (9) ◽  
pp. 334 ◽  
Author(s):  
Christine L. Densmore ◽  
Deborah D. Iwanowicz ◽  
Shawn M. McLaughlin ◽  
Christopher A. Ottinger ◽  
Jason E. Spires ◽  
...  

We evaluated the prevalence of influenza A virus (IAV) in different species of bivalves inhabiting natural water bodies in waterfowl habitat along the Delmarva Peninsula and Chesapeake Bay in eastern Maryland. Bivalve tissue from clam and mussel specimens (Macoma balthica, Macoma phenax, Mulinia sp., Rangia cuneata, Mya arenaria, Guekensia demissa, and an undetermined mussel species) from five collection sites was analyzed for the presence of type A influenza virus by qPCR targeting the matrix gene. Of the 300 tissue samples analyzed, 13 samples (4.3%) tested positive for presence of influenza virus A matrix gene. To our knowledge, this is the first report of detection of IAV in the tissue of any bivalve mollusk from a natural water body.


2010 ◽  
Vol 84 (10) ◽  
pp. 5078-5088 ◽  
Author(s):  
Jeremy S. Rossman ◽  
Xianghong Jing ◽  
George P. Leser ◽  
Victoria Balannik ◽  
Lawrence H. Pinto ◽  
...  

ABSTRACT Influenza A virus buds from cells as spherical (∼100-nm diameter) and filamentous (∼100 nm × 2 to 20 μm) virions. Previous work has determined that the matrix protein (M1) confers the ability of the virus to form filaments; however, additional work has suggested that the influenza virus M2 integral membrane protein also plays a role in viral filament formation. In examining the role of the M2 protein in filament formation, we observed that the cytoplasmic tail of M2 contains several sites that are essential for filament formation. Additionally, whereas M2 is a nonraft protein, expression of other viral proteins in the context of influenza virus infection leads to the colocalization of M2 with sites of virus budding and lipid raft domains. We found that an amphipathic helix located within the M2 cytoplasmic tail is able to bind cholesterol, and we speculate that M2 cholesterol binding is essential for both filament formation and the stability of existing viral filaments.


2007 ◽  
Vol 82 (5) ◽  
pp. 2330-2338 ◽  
Author(s):  
Rojjanaporn Pulmanausahakul ◽  
Jianwei Li ◽  
Matthias J. Schnell ◽  
Bernhard Dietzschold

ABSTRACT While the glycoprotein (G) of rabies virus (RV) is known to play a predominant role in the pathogenesis of rabies, the function of the RV matrix protein (M) in RV pathogenicity is not completely clear. To further investigate the roles of these proteins in viral pathogenicity, we constructed chimeric recombinant viruses by exchanging the G and M genes of the attenuated SN strain with those of the highly pathogenic SB strain. Infection of mice with these chimeric viruses revealed a significant increase in the pathogenicity of the SN strain bearing the RV G from the pathogenic SB strain. Moreover, the pathogenicity was further increased when both G and M from SB were introduced into SN. Interestingly, the replacement of the G or M gene or both in SN by the corresponding genes of SB was associated with a significant decrease in the rate of viral replication and viral RNA synthesis. In addition, a chimeric SN virus bearing both the M and G genes from SB exhibited more efficient cell-to-cell spread than a chimeric SN virus in which only the G gene was replaced. Together, these data indicate that both G and M play an important role in RV pathogenesis by regulating virus replication and facilitating cell-to-cell spread.


2007 ◽  
Vol 81 (13) ◽  
pp. 7111-7123 ◽  
Author(s):  
Benjamin J. Chen ◽  
George P. Leser ◽  
Eiji Morita ◽  
Robert A. Lamb

ABSTRACT For influenza virus, we developed an efficient, noncytotoxic, plasmid-based virus-like particle (VLP) system to reflect authentic virus particles. This system was characterized biochemically by analysis of VLP protein composition, morphologically by electron microscopy, and functionally with a VLP infectivity assay. The VLP system was used to address the identity of the minimal set of viral proteins required for budding. Combinations of viral proteins were expressed in cells, and the polypeptide composition of the particles released into the culture media was analyzed. Contrary to previous findings in which matrix (M1) protein was considered to be the driving force of budding because M1 was found to be released copiously into the culture medium when M1 was expressed by using the vaccinia virus T7 RNA polymerase-driven overexpression system, in our noncytotoxic VLP system M1 was not released efficiently into the culture medium. Additionally, hemagglutinin (HA), when treated with exogenous neuraminidase (NA) or coexpressed with viral NA, could be released from cells independently of M1. Incorporation of M1 into VLPs required HA expression, although when M1 was omitted from VLPs, particles with morphologies similar to those of wild-type VLPs or viruses were observed. Furthermore, when HA and NA cytoplasmic tail mutants were included in the VLPs, M1 failed to be efficiently incorporated into VLPs, consistent with a model in which the glycoproteins control virus budding by sorting to lipid raft microdomains and recruiting the internal viral core components. VLP formation also occurred independently of the function of Vps4 in the multivesicular body pathway, as dominant-negative Vps4 proteins failed to inhibit influenza VLP budding.


2001 ◽  
Vol 75 (17) ◽  
pp. 8127-8136 ◽  
Author(s):  
Daniel R. Perez ◽  
Ruben O. Donis

ABSTRACT Influenza A virus expresses three viral polymerase (P) subunits—PB1, PB2, and PA—all of which are essential for RNA and viral replication. The functions of P proteins in transcription and replication have been partially elucidated, yet some of these functions seem to be dependent on the formation of a heterotrimer for optimal viral RNA transcription and replication. Although it is conceivable that heterotrimer subunit interactions may allow a more efficient catalysis, direct evidence of their essentiality for viral replication is lacking. Biochemical studies addressing the molecular anatomy of the P complexes have revealed direct interactions between PB1 and PB2 as well as between PB1 and PA. Previous studies have shown that the N-terminal 48 amino acids of PB1, termed domain α, contain the residues required for binding PA. We report here the refined mapping of the amino acid sequences within this small region of PB1 that are indispensable for binding PA by deletion mutagenesis of PB1 in a two-hybrid assay. Subsequently, we used site-directed mutagenesis to identify the critical amino acid residues of PB1 for interaction with PA in vivo. The first 12 amino acids of PB1 were found to constitute the core of the interaction interface, thus narrowing the previous boundaries of domain α. The role of the minimal PB1 domain α in influenza virus gene expression and genome replication was subsequently analyzed by evaluating the activity of a set of PB1 mutants in a model reporter minigenome system. A strong correlation was observed between a functional PA binding site on PB1 and P activity. Influenza viruses bearing mutant PB1 genes were recovered using a plasmid-based influenza virus reverse genetics system. Interestingly, mutations that rendered PB1 unable to bind PA were either nonviable or severely growth impaired. These data are consistent with an essential role for the N terminus of PB1 in binding PA, P activity, and virus growth.


2002 ◽  
Vol 76 (16) ◽  
pp. 8011-8018 ◽  
Author(s):  
Himangi R. Jayakar ◽  
Michael A. Whitt

ABSTRACT The matrix (M) protein of vesicular stomatitis virus (VSV) is a multifunctional protein that is responsible for condensation of the ribonucleocapsid core during virus assembly and also plays a critical role in virus budding. The M protein is also responsible for most of the cytopathic effects (CPE) observed in infected cells. VSV CPE include inhibition of host gene expression, disablement of nucleocytoplasmic transport, and disruption of the host cytoskeleton, which results in rounding of infected cells. In this report, we show that the VSV M gene codes for two additional polypeptides, which we have named M2 and M3. These proteins are synthesized from downstream methionines in the same open reading frame as the M protein (which we refer to here as M1) and lack the first 32 (M2) or 50 (M3) amino acids of M1. Infection of cells with a recombinant virus that does not express M2 and M3 (M33,51A) resulted in a delay in cell rounding, but virus yield was not affected. Transient expression of M2 and M3 alone caused cell rounding similar to that with the full-length M1 protein, suggesting that the cell-rounding function of the M protein does not require the N-terminal 50 amino acids. To determine if M2 and M3 were sufficient for VSV-mediated CPE, both M2 and M3 were expressed from a separate cistron in a VSV mutant background that readily establishes persistent infections and that normally lacks CPE. Infection of cells with the recombinant virus that expressed M2 and M3 resulted in cell rounding indistinguishable from that with the wild-type recombinant virus. These results suggest that M2 and M3 are important for cell rounding and may play an important role in viral cytopathogenesis. To our knowledge, this is first report of the multiple coding capacities of a rhabdovirus matrix gene.


2009 ◽  
Vol 53 (10) ◽  
pp. 4457-4463 ◽  
Author(s):  
Yuki Furuse ◽  
Akira Suzuki ◽  
Hitoshi Oshitani

ABSTRACT Influenza A virus infects many species, and amantadine is used as an antiviral agent. Recently, a substantial increase in amantadine-resistant strains has been reported, most of which have a substitution at amino acid position 31 in the M2 gene. Understanding the mechanism responsible for the emergence and spread of antiviral resistance is important for developing a treatment protocol for seasonal influenza and for deciding on a policy for antiviral stockpiling for pandemic influenza. The present study was conducted to identify the existence of drug pressure on the emergence and spread of amantadine-resistant influenza A viruses. We analyzed data on more than 5,000 virus sequences and constructed a phylogenetic tree to calculate selective pressures on sites in the M2 gene associated with amantadine resistance (positions 26, 27, 30, and 31) among different hosts. The phylogenetic tree revealed that the emergence and spread of the drug-resistant M gene in different hosts and subtypes were independent and not through reassortment. For human influenza virus, positive selection was detected only at position 27. Selective pressures on the sites were not always higher for human influenza virus than for viruses of other hosts. Additionally, selective pressure on position 31 did not increase after the introduction of amantadine. Although there is a possibility of drug pressure on human influenza virus, we could not find positive pressure on position 31. Because the recent rapid increase in drug-resistant virus is associated with the substitution at position 31, the resistance may not be related to drug use.


Viruses ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1046 ◽  
Author(s):  
Seon-Ju Yeo ◽  
Duc-Duong Than ◽  
Hong-Seog Park ◽  
Haan Woo Sung ◽  
Hyun Park

A novel avian influenza virus (A/wild duck/Korea/K102/2018) (H2N9) was isolated from wild birds in South Korea in 2018, and phylogenetic and molecular analyses were conducted on complete gene sequences obtained by next-generation sequencing. Phylogenetic analysis indicated that the hemagglutinin (HA) and neuraminidase (NA) genes of the A/wild duck/Korea/K102/2018 (H2N9) virus belonged to the Eurasian countries, whereas other internal genes (polymerase basic protein 1 (PB1), PB2, nucleoprotein (NP), polymerase acidic protein (PA), matrix protein (M), and non-structural protein (NS)) belonged to the East Asian countries. A monobasic amino acid (PQIEPR/GLF) at the HA cleavage site, E627 in the PB2 gene, and no deletion of the stalk region in the NA gene indicated that the A/wild duck/Korea/K102/2018 (H2N9) isolate was a typical low pathogenicity avian influenza (LPAI). Nucleotide sequence similarity analysis of HA revealed that the highest homology (98.34%) is to that of A/duck/Mongolia/482/2015 (H2N3), and amino acid sequence of NA was closely related to that of A/duck/Bangladesh/8987/2010 (H10N9) (96.45%). In contrast, internal genes showed homology higher than 98% compared to those of other isolates derived from duck and wild birds of China or Japan in 2016–2018. The newly isolated A/wild duck/Korea/K102/2018 (H2N9) strain is the first reported avian influenza virus in Korea, and may have evolved from multiple genotypes in wild birds and ducks in Mongolia, China, and Japan.


Sign in / Sign up

Export Citation Format

Share Document