scholarly journals Deep Mutational Scan of the Highly Conserved Influenza A Virus M1 Matrix Protein Reveals Substantial Intrinsic Mutational Tolerance

2019 ◽  
Vol 93 (13) ◽  
Author(s):  
Nancy Hom ◽  
Lauren Gentles ◽  
Jesse D. Bloom ◽  
Kelly K. Lee

ABSTRACTInfluenza A virus matrix protein M1 is involved in multiple stages of the viral infectious cycle. Despite its functional importance, our present understanding of this essential viral protein is limited. The roles of a small subset of specific amino acids have been reported, but a more comprehensive understanding of the relationship between M1 sequence, structure, and virus fitness remains elusive. In this study, we used deep mutational scanning to measure the effect of every amino acid substitution in M1 on viral replication in cell culture. The map of amino acid mutational tolerance we have generated allows us to identify sites that are functionally constrained in cell culture as well as sites that are less constrained. Several sites that exhibit low tolerance to mutation have been found to be critical for M1 function and production of viable virions. Surprisingly, significant portions of the M1 sequence, especially in the C-terminal domain, whose structure is undetermined, were found to be highly tolerant of amino acid variation, despite having extremely low levels of sequence diversity among natural influenza virus strains. This unexpected discrepancy indicates that not all sites in M1 that exhibit high sequence conservation in nature are under strong constraint during selection for viral replication in cell culture.IMPORTANCEThe M1 matrix protein is critical for many stages of the influenza virus infection cycle. Currently, we have an incomplete understanding of this highly conserved protein’s function and structure. Key regions of M1, particularly in the C terminus of the protein, remain poorly characterized. In this study, we used deep mutational scanning to determine the extent of M1’s tolerance to mutation. Surprisingly, nearly two-thirds of the M1 sequence exhibits a high tolerance for substitutions, contrary to the extremely low sequence diversity observed across naturally occurring M1 isolates. Sites with low mutational tolerance were also identified, suggesting that they likely play critical functional roles and are under selective pressure. These results reveal the intrinsic mutational tolerance throughout M1 and shape future inquiries probing the functions of this essential influenza A virus protein.

2001 ◽  
Vol 75 (17) ◽  
pp. 8127-8136 ◽  
Author(s):  
Daniel R. Perez ◽  
Ruben O. Donis

ABSTRACT Influenza A virus expresses three viral polymerase (P) subunits—PB1, PB2, and PA—all of which are essential for RNA and viral replication. The functions of P proteins in transcription and replication have been partially elucidated, yet some of these functions seem to be dependent on the formation of a heterotrimer for optimal viral RNA transcription and replication. Although it is conceivable that heterotrimer subunit interactions may allow a more efficient catalysis, direct evidence of their essentiality for viral replication is lacking. Biochemical studies addressing the molecular anatomy of the P complexes have revealed direct interactions between PB1 and PB2 as well as between PB1 and PA. Previous studies have shown that the N-terminal 48 amino acids of PB1, termed domain α, contain the residues required for binding PA. We report here the refined mapping of the amino acid sequences within this small region of PB1 that are indispensable for binding PA by deletion mutagenesis of PB1 in a two-hybrid assay. Subsequently, we used site-directed mutagenesis to identify the critical amino acid residues of PB1 for interaction with PA in vivo. The first 12 amino acids of PB1 were found to constitute the core of the interaction interface, thus narrowing the previous boundaries of domain α. The role of the minimal PB1 domain α in influenza virus gene expression and genome replication was subsequently analyzed by evaluating the activity of a set of PB1 mutants in a model reporter minigenome system. A strong correlation was observed between a functional PA binding site on PB1 and P activity. Influenza viruses bearing mutant PB1 genes were recovered using a plasmid-based influenza virus reverse genetics system. Interestingly, mutations that rendered PB1 unable to bind PA were either nonviable or severely growth impaired. These data are consistent with an essential role for the N terminus of PB1 in binding PA, P activity, and virus growth.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 156
Author(s):  
Jasmina M. Luczo ◽  
Sydney L. Ronzulli ◽  
Stephen M. Tompkins

Natural killer (NK) cells are part of the innate immunity repertoire, and function in the recognition and destruction of tumorigenic and pathogen-infected cells. Engagement of NK cell activating receptors can lead to functional activation of NK cells, resulting in lysis of target cells. NK cell activating receptors specific for non-major histocompatibility complex ligands are NKp46, NKp44, NKp30, NKG2D, and CD16 (also known as FcγRIII). The natural cytotoxicity receptors (NCRs), NKp46, NKp44, and NKp30, have been implicated in functional activation of NK cells following influenza virus infection via binding with influenza virus hemagglutinin (HA). In this review we describe NK cell and influenza A virus biology, and the interactions of influenza A virus HA and other pathogen lectins with NK cell natural cytotoxicity receptors (NCRs). We review concepts which intersect viral immunology, traditional virology and glycobiology to provide insights into the interactions between influenza virus HA and the NCRs. Furthermore, we provide expert opinion on future directions that would provide insights into currently unanswered questions.


2020 ◽  
Author(s):  
Ronghe Zhu ◽  
Cuie Chen ◽  
Qiu Wang ◽  
Xixi Zhang ◽  
Chaosheng Lu ◽  
...  

Abstract Purpose Routine blood parameters, such as the lymphocyte (LYM) count, platelet (PLT) count, lymphocyte-to-monocyte ratio (LMR), neutrophil-to-lymphocyte ratio (NLR), LYM*PLT and mean platelet volume-to-platelet ratio (MPV/PLT), are widely used to predict the prognosis of infectious diseases. We aimed to explore the value of these parameters in the early identification of influenza virus infection in children.Methods We conducted a single-center, retrospective, observational study of fever with influenza-like symptoms in pediatric outpatients from different age groups and evaluated the predictive value of various routine blood parameters measured within 48 hours of the onset of fever for influenza virus infection.Results The LYM count, PLT count, LMR and LYM*PLT were lower, and the NLR and MPV/PLT were higher in children with an influenza infection (PCR-confirmed and symptomatic). The LYM count, LMR and LYM*PLT in the influenza infection group were lower in the 1- to 6-year-old subgroup, and the LMR and LYM*PLT in the influenza infection group were lower in the >6-year-old subgroup. In the 1- to 6-year-old subgroup, the cutoff value of the LMR for predicting influenza A virus infection was 3.75, the sensitivity was 81.87%, the specificity was 84.31%, and the area under the curve (AUC) was 0.886; the cutoff value of the LMR for predicting influenza B virus infection was 3.71, the sensitivity was 73.58%, the specificity was 84.31%, and the AUC was 0.843. In the >6-year-old subgroup, the cutoff value of the LMR for predicting influenza A virus infection was 3.05, the sensitivity was 89.27%, the specificity was 89.61%, and the AUC was 0.949; the cutoff value of the LMR for predicting influenza B virus infection was 2.88, the sensitivity was 83.19%, the specificity was 92.21%, and the AUC was 0.924.Conclusions Routine blood tests are simple, inexpensive and easy to perform, and they are useful for the early identification of influenza virus infection in children. The LMR had the strongest predictive value for influenza virus infection in children older than 1 year, particularly influenza A virus infection.


Viruses ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1046 ◽  
Author(s):  
Seon-Ju Yeo ◽  
Duc-Duong Than ◽  
Hong-Seog Park ◽  
Haan Woo Sung ◽  
Hyun Park

A novel avian influenza virus (A/wild duck/Korea/K102/2018) (H2N9) was isolated from wild birds in South Korea in 2018, and phylogenetic and molecular analyses were conducted on complete gene sequences obtained by next-generation sequencing. Phylogenetic analysis indicated that the hemagglutinin (HA) and neuraminidase (NA) genes of the A/wild duck/Korea/K102/2018 (H2N9) virus belonged to the Eurasian countries, whereas other internal genes (polymerase basic protein 1 (PB1), PB2, nucleoprotein (NP), polymerase acidic protein (PA), matrix protein (M), and non-structural protein (NS)) belonged to the East Asian countries. A monobasic amino acid (PQIEPR/GLF) at the HA cleavage site, E627 in the PB2 gene, and no deletion of the stalk region in the NA gene indicated that the A/wild duck/Korea/K102/2018 (H2N9) isolate was a typical low pathogenicity avian influenza (LPAI). Nucleotide sequence similarity analysis of HA revealed that the highest homology (98.34%) is to that of A/duck/Mongolia/482/2015 (H2N3), and amino acid sequence of NA was closely related to that of A/duck/Bangladesh/8987/2010 (H10N9) (96.45%). In contrast, internal genes showed homology higher than 98% compared to those of other isolates derived from duck and wild birds of China or Japan in 2016–2018. The newly isolated A/wild duck/Korea/K102/2018 (H2N9) strain is the first reported avian influenza virus in Korea, and may have evolved from multiple genotypes in wild birds and ducks in Mongolia, China, and Japan.


2002 ◽  
Vol 76 (24) ◽  
pp. 13055-13061 ◽  
Author(s):  
Teresa Liu ◽  
Zhiping Ye

ABSTRACT The matrix protein (M1) of influenza virus plays an essential role in viral assembly and has a variety of functions, including association with influenza virus ribonucleoprotein (RNP). Our previous studies show that the association of M1 with viral RNA and nucleoprotein not only promotes formation of helical RNP but also is required for export of RNP from the nucleus during viral replication. The RNA-binding domains of M1 have been mapped to two independent regions: a zinc finger motif at amino acid positions 148 to 162 and a series of basic amino acids (RKLKR) at amino acid positions 101 to 105, which is also involved in RNP-binding activity. To further understand the role of the RNP-binding domain of M1 in viral assembly and replication, mutations in the coding sequences of RKLKR and the zinc finger motif of M1 were constructed using a PCR technique and introduced into wild-type influenza virus by reverse genetics. Altering the zinc finger motif of M1 only slightly affected viral growth. Substitution of Arg with Ser at position 101 or 105 of RKLKR did not have a major impact on nuclear export of RNP or viral replication. In contrast, deletion of RKLKR or substitution of Lys with Asn at position 102 or 104 of RKLKR resulted in a lethal mutation. These results indicate that the RKLKR domain of M1 protein plays an important role in viral replication.


2020 ◽  
Vol 64 (7) ◽  
Author(s):  
Simone E. Adams ◽  
Vladimir Y. Lugovtsev ◽  
Anastasia Kan ◽  
Nicolai V. Bovin ◽  
Raymond P. Donnelly ◽  
...  

ABSTRACT Each year, 5% to 20% of the population of the United States becomes infected with influenza A virus. Combination therapy with two or more antiviral agents has been considered a potential treatment option for influenza virus infection. However, the clinical results derived from combination treatment with two or more antiviral drugs have been variable. We examined the effectiveness of cotreatment with two distinct classes of anti-influenza drugs, i.e., neuraminidase (NA) inhibitor, laninamivir, and interferon lambda 1 (IFN-λ1), against the emergence of drug-resistant virus variants in vitro. We serially passaged pandemic A/California/04/09 [A(H1N1)pdm09] influenza virus in a human lung epithelial cell line (Calu-3) in the presence or absence of increasing concentrations of laninamivir or laninamivir plus IFN-λ1. Surprisingly, laninamivir used in combination with IFN-λ1 promoted the emergence of the E119G NA mutation five passages earlier than laninamivir alone (passage 2 versus passage 7, respectively). Acquisition of this mutation resulted in significantly reduced sensitivity to the NA inhibitors laninamivir (∼284-fold) and zanamivir (∼1,024-fold) and decreased NA enzyme catalytic activity (∼5-fold) compared to the parental virus. Moreover, the E119G NA mutation emerged together with concomitant hemagglutinin (HA) mutations (T197A and D222G), which were selected more rapidly by combination treatment with laninamivir plus IFN-λ1 (passages 2 and 3, respectively) than by laninamivir alone (passage 10). Our results show that treatment with laninamivir alone or in combination with IFN-λ1 can lead to the emergence of drug-resistant influenza virus variants. The addition of IFN-λ1 in combination with laninamivir may promote acquisition of drug resistance more rapidly than treatment with laninamivir alone.


2008 ◽  
Vol 89 (1) ◽  
pp. 60-67 ◽  
Author(s):  
Norio Ogata ◽  
Takashi Shibata

Influenza virus infection is one of the major causes of human morbidity and mortality. Between humans, this virus spreads mostly via aerosols excreted from the respiratory system. Current means of prevention of influenza virus infection are not entirely satisfactory because of their limited efficacy. Safe and effective preventive measures against pandemic influenza are greatly needed. We demonstrate that infection of mice induced by aerosols of influenza A virus was prevented by chlorine dioxide (ClO2) gas at an extremely low concentration (below the long-term permissible exposure level to humans, namely 0.1 p.p.m.). Mice in semi-closed cages were exposed to aerosols of influenza A virus (1 LD50) and ClO2 gas (0.03 p.p.m.) simultaneously for 15 min. Three days after exposure, pulmonary virus titre (TCID50) was 102.6±1.5 in five mice treated with ClO2, whilst it was 106.7±0.2 in five mice that had not been treated (P=0.003). Cumulative mortality after 16 days was 0/10 mice treated with ClO2 and 7/10 mice that had not been treated (P=0.002). In in vitro experiments, ClO2 denatured viral envelope proteins (haemagglutinin and neuraminidase) that are indispensable for infectivity of the virus, and abolished infectivity. Taken together, we conclude that ClO2 gas is effective at preventing aerosol-induced influenza virus infection in mice by denaturing viral envelope proteins at a concentration well below the permissible exposure level to humans. ClO2 gas could therefore be useful as a preventive means against influenza in places of human activity without necessitating evacuation.


2000 ◽  
Vol 44 (1) ◽  
pp. 200-204 ◽  
Author(s):  
Francesca Pica ◽  
Anna Teresa Palamara ◽  
Antonio Rossi ◽  
Alessandra De Marco ◽  
Carla Amici ◽  
...  

ABSTRACT 9-Deoxy-Δ9,Δ12-13,14-dihydro-prostaglandin D2 (Δ12-PGJ2), a natural cyclopentenone metabolite of prostaglandin D2, is shown to possess therapeutic efficacy against influenza A virus A/PR8/34 (H1N1) infection in vitro and in vivo. The results indicate that the antiviral activity is associated with induction of cytoprotective heat shock proteins and suggest novel strategies for treatment of influenza virus infection.


2021 ◽  
Author(s):  
yuqi Wang ◽  
Yanyan Wang ◽  
Hong Cao

Abstract Background: Influenza virus infection with seasonal or occasional but devastating morbidity and mortality, is a severe threat to public health. The frequent emergence of resistant viral strains limited application of current antivirals and posing an urgent need for novel antiviral therapies. Natural products offered a broad prospect in the screening and development of new influenza inhibitors.Methods: In this research, a high-throughput antiviral screening for 891 natural products was performed based on a recombinant reporter influenza A virus. According to the cytotoxicity assay and dose-response relationship, alloprogesterone (ALLO), as the positive hit was selected, and verified by viral titer reduction assay and immunofluorescence using a wild-type virus. Followingly, we explored its antiviral potency of counteracting with IAV and IBV, and preliminary investigated the mechanism of ALLO through time-of-addition assay and mini-replicon system.Results: Under the criteria of 80% inhibition and 70% cell viability, ALLO was screened out and confirmed antiviral activity in varied cells. The inhibitory effect of ALLO against influenza virus with a dose-dependent manner and significantly reduced viral yield of five different influenza viruses in the presence of 40 µM ALLO, including oseltamivir-resistant virus. Moreover, ALLO exhibited no influence on IAV entry or release during the viral replication cycle, but obviously interfered with the genome replication regarding post-infection 2 hrs to 6 hrs, which is consistent with the evidence of decreased polymerase activity.Conclusions: In summary, we firstly identified a new pharmacological activity of ALLO, as a broad spectrum inhibitor for treatment influenza infections, targeting viral replication stage and possessing great value of further development.


2020 ◽  
Author(s):  
Ronghe Zhu ◽  
Qiu Wang ◽  
Cuie Chen ◽  
Xixi Zhang ◽  
Chaosheng Lu ◽  
...  

Abstract Purpose We aimed to explore the value of Routine blood parameters, such as the lymphocyte (LYM) count, platelet (PLT) count, lymphocyte-to-monocyte ratio (LMR), neutrophil-to-lymphocyte ratio (NLR), LYM*PLT and mean platelet volume-to-platelet ratio (MPV/PLT), are widely used to predict the prognosis of infectious diseases, for predicting influenza virus infection in children. Methods We conducted a single-center, retrospective, observational study on fever with influenza-like symptom in pediatric outpatients in different age groups and evaluated the predictive value of various routine blood parameters within 48 hours of the onset of fever after influenza virus infection. Results The LYM count, PLT count, LMR and LYM*PLT were lower, and the NLR and MPV/PLT were higher in the infected children. The LYM count, LMR and LYM*PLT in the infected group were lower in the 1- to 6-year-old group, and the LMR and LYM*PLT in the infected group were lower in the > 6-year-old group. In the 1- to 6-year-old group, the cutoff value of the LMR for predicting influenza A virus infection was 3.75, the sensitivity was 81.87%, the specificity was 84.31%, and the AUC was 0.886; the cutoff value of the LMR for predicting influenza B virus infection was 3.71, the sensitivity was 73.58%, the specificity was 84.31%, and the AUC was 0.843. In the > 6-year-old group, the cutoff value of the LMR for predicting influenza A virus infection was 3.05, the sensitivity was 89.27%, the specificity was 89.61%, and the AUC was 0.949; the cutoff value of the LMR for predicting influenza B virus infection was 2.88, the sensitivity was 83.19%, the specificity was 92.21%, and the AUC was 0.924. Conclusions Routine blood tests are simple, inexpensive and easy to perform, and they are useful for predicting influenza virus infection in children. The LMR had the strongest predictive value for influenza virus infection in children older than 1 year, especially influenza A virus infection.


Sign in / Sign up

Export Citation Format

Share Document