scholarly journals Maturation of the Human Papillomavirus 16 Capsid

mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Giovanni Cardone ◽  
Adam L. Moyer ◽  
Naiqian Cheng ◽  
Cynthia D. Thompson ◽  
Israel Dvoretzky ◽  
...  

ABSTRACTPapillomaviruses are a family of nonenveloped DNA viruses that infect the skin or mucosa of their vertebrate hosts. The viral life cycle is closely tied to the differentiation of infected keratinocytes. Papillomavirus virions are released into the environment through a process known as desquamation, in which keratinocytes lose structural integrity prior to being shed from the surface of the skin. During this process, virions are exposed to an increasingly oxidative environment, leading to their stabilization through the formation of disulfide cross-links between neighboring molecules of the major capsid protein, L1. We used time-lapse cryo-electron microscopy and image analysis to study the maturation of HPV16 capsids assembled in mammalian cells and exposed to an oxidizing environment after cell lysis. Initially, the virion is a loosely connected procapsid that, underin vitroconditions, condenses over several hours into the more familiar 60-nm-diameter papillomavirus capsid. In this process, the procapsid shrinks by ~5% in diameter, its pentameric capsomers change in structure (most markedly in the axial region), and the interaction surfaces between adjacent capsomers are consolidated. A C175S mutant that cannot achieve normal inter-L1 disulfide cross-links shows maturation-related shrinkage but does not achieve the fully condensed 60-nm form. Pseudoatomic modeling based on a 9-Å resolution reconstruction of fully mature capsids revealed C-terminal disulfide-stabilized “suspended bridges” that form intercapsomeric cross-links. The data suggest a model in which procapsids exist in a range of dynamic intermediates that can be locked into increasingly mature configurations by disulfide cross-linking, possibly through a Brownian ratchet mechanism.IMPORTANCEHuman papillomaviruses (HPVs) cause nearly all cases of cervical cancer, a major fraction of cancers of the penis, vagina/vulva, anus, and tonsils, and genital and nongenital warts. HPV types associated with a high risk of cancer, such as HPV16, are generally transmitted via sexual contact. The nonenveloped virion of HPVs shows a high degree of stability, allowing the virus to persist in an infectious form in environmental fomites. In this study, we used cryo-electron microscopy to elucidate the structure of the HPV16 capsid at different stages of maturation. The fully mature capsid adopts a rigid, highly regular structure stabilized by intermolecular disulfide bonds. The availability of a pseudoatomic model of the fully mature HPV16 virion should help guide understanding of antibody responses elicited by HPV capsid-based vaccines.

Author(s):  
John M. Murray ◽  
Rob Ward

The eukaryotic flagellum is constructed from 11 parallel tubular elements arranged as 9 peripheral fibers (doublet microtubules) and 2 central fibers (singlet microtubules). The primary motion generating component has been found to be arranged as axially periodic “arms” bridging the adjacent doublets. The dynein, comprising the arms, has been isolated and characterized from several different cilia and flagella. Various radial and azimuthal cross-links stabilize the axially aligned microtubules, and probably play some role in controlling the form of the flagella beat cycle.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Marius Kollmer ◽  
William Close ◽  
Leonie Funk ◽  
Jay Rasmussen ◽  
Aref Bsoul ◽  
...  

Abstract The formation of Aβ amyloid fibrils is a neuropathological hallmark of Alzheimer’s disease and cerebral amyloid angiopathy. However, the structure of Aβ amyloid fibrils from brain tissue is poorly understood. Here we report the purification of Aβ amyloid fibrils from meningeal Alzheimer’s brain tissue and their structural analysis with cryo-electron microscopy. We show that these fibrils are polymorphic but consist of similarly structured protofilaments. Brain derived Aβ amyloid fibrils are right-hand twisted and their peptide fold differs sharply from previously analyzed Aβ fibrils that were formed in vitro. These data underscore the importance to use patient-derived amyloid fibrils when investigating the structural basis of the disease.


2015 ◽  
Vol 112 (43) ◽  
pp. 13237-13242 ◽  
Author(s):  
Lorenzo Sborgi ◽  
Francesco Ravotti ◽  
Venkata P. Dandey ◽  
Mathias S. Dick ◽  
Adam Mazur ◽  
...  

Inflammasomes are multiprotein complexes that control the innate immune response by activating caspase-1, thus promoting the secretion of cytokines in response to invading pathogens and endogenous triggers. Assembly of inflammasomes is induced by activation of a receptor protein. Many inflammasome receptors require the adapter protein ASC [apoptosis-associated speck-like protein containing a caspase-recruitment domain (CARD)], which consists of two domains, the N-terminal pyrin domain (PYD) and the C-terminal CARD. Upon activation, ASC forms large oligomeric filaments, which facilitate procaspase-1 recruitment. Here, we characterize the structure and filament formation of mouse ASC in vitro at atomic resolution. Information from cryo-electron microscopy and solid-state NMR spectroscopy is combined in a single structure calculation to obtain the atomic-resolution structure of the ASC filament. Perturbations of NMR resonances upon filament formation monitor the specific binding interfaces of ASC-PYD association. Importantly, NMR experiments show the rigidity of the PYD forming the core of the filament as well as the high mobility of the CARD relative to this core. The findings are validated by structure-based mutagenesis experiments in cultured macrophages. The 3D structure of the mouse ASC-PYD filament is highly similar to the recently determined human ASC-PYD filament, suggesting evolutionary conservation of ASC-dependent inflammasome mechanisms.


2021 ◽  
Author(s):  
Liisa Lutter ◽  
Youssra Al-Hilaly ◽  
Christopher J. Serpell ◽  
Mick F. Tuite ◽  
Claude M. Wischik ◽  
...  

The presence of amyloid fibrils is a hallmark of more than 50 human disorders, including neurodegenerative diseases and systemic amyloidoses. A key unresolved challenge in understanding the involvement of amyloid in disease is to explain the relationship between individual structural polymorphs of amyloid fibrils, in potentially mixed populations, and the specific pathologies with which they are associated. Although cryo-electron microscopy (cryo-EM) and solid-state nuclear magnetic resonance (ssNMR) spectroscopy methods have been successfully employed in recent years to determine the structures of amyloid fibrils with high resolution detail, they rely on ensemble averaging of fibril structures in the entire sample or significant subpopulations. Here, we report a method for structural identification of individual fibril structures imaged by atomic force microscopy (AFM) by integration of high-resolution maps of amyloid fibrils determined by cryo-EM in comparative AFM image analysis. This approach was demonstrated using the hitherto structurally unresolved amyloid fibrils formed in vitro from a fragment of tau (297-391), termed 'dGAE'. Our approach established unequivocally that dGAE amyloid fibrils bear no structural relationship to heparin-induced tau fibrils formed in vitro. Furthermore, our comparative analysis resulted in the prediction that dGAE fibrils are closely related structurally to the paired helical filaments (PHFs) isolated from Alzheimer's disease (AD) brain tissue characterised by cryo-EM. These results show the utility of individual particle structural analysis using AFM, provide a workflow of how cryo-EM data can be incorporated into AFM image analysis and facilitate an integrated structural analysis of amyloid polymorphism.


2020 ◽  
Vol 319 (1) ◽  
pp. R69-R78
Author(s):  
Zhuping Jin ◽  
Quanxi Zhang ◽  
Eden Wondimu ◽  
Richa Verma ◽  
Ming Fu ◽  
...  

The production of H2S and its effect on bioenergetics in mammalian cells may be evolutionarily preserved. Erythrocytes of birds, but not those of mammals, have a nucleus and mitochondria. In the present study, we report the endogenous production of H2S in chicken erythrocytes, which was mainly catalyzed by 3-mercaptopyruvate sulfur transferase (MST). ATP content of erythrocytes was increased by MST-generated endogenous H2S under normoxic, but not hypoxic, conditions. NaHS, a H2S salt, increased ATP content under normoxic, but not hypoxic, conditions. ATP contents in the absence or presence of NaHS were eliminated by different inhibitors for mitochondrial electron transport chain in chicken erythrocytes. Succinate and glutamine, but not glucose, increased ATP content. NaHS treatment similarly increased ATP content in the presence of glucose, glutamine, or succinate, respectively. Furthermore, the expression and activity of sulfide:quinone oxidoreductase were enhanced by NaHS. The structural integrity of chicken erythrocytes was largely maintained during 2-wk NaHS treatment in vitro, whereas most of the erythrocytes without NaHS treatment were lysed. In conclusion, H2S may regulate cellular bioenergetics as well as cell survival of chicken erythrocytes, in which the functionality of the electron transport chain is involved. H2S may have different regulatory roles and mechanisms in bioenergetics of mammalian and bird cells.


PLoS ONE ◽  
2017 ◽  
Vol 12 (6) ◽  
pp. e0179397 ◽  
Author(s):  
Kaustuv Basu ◽  
Driss Lajoie ◽  
Tristan Aumentado-Armstrong ◽  
Jin Chen ◽  
Roman I. Koning ◽  
...  

2019 ◽  
Author(s):  
Alexander D. Cook ◽  
Szymon W. Manka ◽  
Su Wang ◽  
Carolyn A. Moores ◽  
Joseph Atherton

AbstractMicrotubules are polar filaments built from αβ-tubulin heterodimers that exhibit a range of architectures in vitro and in vivo. Tubulin heterodimers are arranged helically in the microtubule wall but many physiologically relevant architectures exhibit a break in helical symmetry known as the seam. Noisy 2D cryo-electron microscopy projection images of pseudo-helical microtubules therefore depict distinct but highly similar views owing to the high structural similarity of α- and β-tubulin. The determination of the αβ-tubulin register and seam location during image processing is essential for alignment accuracy that enables determination of biologically relevant structures. Here we present a pipeline designed for image processing and high-resolution reconstruction of cryo-electron microscopy microtubule datasets, based in the popular and user-friendly RELION image-processing package, Microtubule RELION-based Pipeline (MiRP). The pipeline uses a combination of supervised classification and prior knowledge about geometric lattice constraints in microtubules to accurately determine microtubule architecture and seam location. The presented method is fast and semi-automated, producing near-atomic resolution reconstructions with test datasets that contain a range of microtubule architectures and binding proteins.AbbreviationsMiRP, Microtubule RELION-based Pipeline; cryo-EM, cryo-electron microscopy; MT, microtubule; CTF, contrast transfer function; PF, protofilament.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Mikhail Kavalchuk ◽  
Ahmad Jomaa ◽  
Andreas U. Müller ◽  
Eilika Weber-Ban

AbstractProteasomes are present in eukaryotes, archaea and Actinobacteria, including the human pathogen Mycobacterium tuberculosis, where proteasomal degradation supports persistence inside the host. In mycobacteria and other members of Actinobacteria, prokaryotic ubiquitin-like protein (Pup) serves as a degradation tag post-translationally conjugated to target proteins for their recruitment to the mycobacterial proteasome ATPase (Mpa). Here, we use single-particle cryo-electron microscopy to determine the structure of Mpa in complex with the 20S core particle at an early stage of pupylated substrate recruitment, shedding light on the mechanism of substrate translocation. Two conformational states of Mpa show how substrate is translocated stepwise towards the degradation chamber of the proteasome core particle. We also demonstrate, in vitro and in vivo, the importance of a structural feature in Mpa that allows formation of alternating charge-complementary interactions with the proteasome resulting in radial, rail-guided movements during the ATPase conformational cycle.


Sign in / Sign up

Export Citation Format

Share Document