Study of eukaryotic flagellar components by cryo-electron microscopy

Author(s):  
John M. Murray ◽  
Rob Ward

The eukaryotic flagellum is constructed from 11 parallel tubular elements arranged as 9 peripheral fibers (doublet microtubules) and 2 central fibers (singlet microtubules). The primary motion generating component has been found to be arranged as axially periodic “arms” bridging the adjacent doublets. The dynein, comprising the arms, has been isolated and characterized from several different cilia and flagella. Various radial and azimuthal cross-links stabilize the axially aligned microtubules, and probably play some role in controlling the form of the flagella beat cycle.

mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Giovanni Cardone ◽  
Adam L. Moyer ◽  
Naiqian Cheng ◽  
Cynthia D. Thompson ◽  
Israel Dvoretzky ◽  
...  

ABSTRACTPapillomaviruses are a family of nonenveloped DNA viruses that infect the skin or mucosa of their vertebrate hosts. The viral life cycle is closely tied to the differentiation of infected keratinocytes. Papillomavirus virions are released into the environment through a process known as desquamation, in which keratinocytes lose structural integrity prior to being shed from the surface of the skin. During this process, virions are exposed to an increasingly oxidative environment, leading to their stabilization through the formation of disulfide cross-links between neighboring molecules of the major capsid protein, L1. We used time-lapse cryo-electron microscopy and image analysis to study the maturation of HPV16 capsids assembled in mammalian cells and exposed to an oxidizing environment after cell lysis. Initially, the virion is a loosely connected procapsid that, underin vitroconditions, condenses over several hours into the more familiar 60-nm-diameter papillomavirus capsid. In this process, the procapsid shrinks by ~5% in diameter, its pentameric capsomers change in structure (most markedly in the axial region), and the interaction surfaces between adjacent capsomers are consolidated. A C175S mutant that cannot achieve normal inter-L1 disulfide cross-links shows maturation-related shrinkage but does not achieve the fully condensed 60-nm form. Pseudoatomic modeling based on a 9-Å resolution reconstruction of fully mature capsids revealed C-terminal disulfide-stabilized “suspended bridges” that form intercapsomeric cross-links. The data suggest a model in which procapsids exist in a range of dynamic intermediates that can be locked into increasingly mature configurations by disulfide cross-linking, possibly through a Brownian ratchet mechanism.IMPORTANCEHuman papillomaviruses (HPVs) cause nearly all cases of cervical cancer, a major fraction of cancers of the penis, vagina/vulva, anus, and tonsils, and genital and nongenital warts. HPV types associated with a high risk of cancer, such as HPV16, are generally transmitted via sexual contact. The nonenveloped virion of HPVs shows a high degree of stability, allowing the virus to persist in an infectious form in environmental fomites. In this study, we used cryo-electron microscopy to elucidate the structure of the HPV16 capsid at different stages of maturation. The fully mature capsid adopts a rigid, highly regular structure stabilized by intermolecular disulfide bonds. The availability of a pseudoatomic model of the fully mature HPV16 virion should help guide understanding of antibody responses elicited by HPV capsid-based vaccines.


2021 ◽  
Vol 118 (4) ◽  
pp. e2021180118
Author(s):  
Wei Zheng ◽  
Fan Li ◽  
Zhanyu Ding ◽  
Hao Liu ◽  
Lei Zhu ◽  
...  

The radial spoke (RS) heads of motile cilia and flagella contact projections of the central pair (CP) apparatus to coordinate motility, but the morphology is distinct for protozoa and metazoa. Here we show the murine RS head is compositionally distinct from that ofChlamydomonas. Our reconstituted murine RS head core complex consists of Rsph1, Rsph3b, Rsph4a, and Rsph9, lacking Rsph6a and Rsph10b, whose orthologs exist in the protozoan RS head. We resolve its cryo-electron microscopy (cryo-EM) structure at 3.2-Å resolution. Our atomic model further reveals a twofold symmetric brake pad-shaped structure, in which Rsph4a and Rsph9 form a compact body extended laterally with two long arms of twisted Rsph1 β-sheets and potentially connected dorsally via Rsph3b to the RS stalk. Furthermore, our modeling suggests that the core complex contacts the periodic CP projections either rigidly through its tooth-shaped Rsph4a regions or elastically through both arms for optimized RS–CP interactions and mechanosignal transduction.


Science ◽  
2021 ◽  
Vol 371 (6532) ◽  
pp. 910-916
Author(s):  
Girish R. Mali ◽  
Ferdos Abid Ali ◽  
Clinton K. Lau ◽  
Farida Begum ◽  
Jérôme Boulanger ◽  
...  

The main force generators in eukaryotic cilia and flagella are axonemal outer dynein arms (ODAs). During ciliogenesis, these ~1.8-megadalton complexes are assembled in the cytoplasm and targeted to cilia by an unknown mechanism. Here, we used the ciliateTetrahymenato identify two factors (Q22YU3 and Q22MS1) that bind ODAs in the cytoplasm and are required for ODA delivery to cilia. Q22YU3, which we named Shulin, locked the ODA motor domains into a closed conformation and inhibited motor activity. Cryo–electron microscopy revealed how Shulin stabilized this compact form of ODAs by binding to the dynein tails. Our findings provide a molecular explanation for how newly assembled dyneins are packaged for delivery to the cilia.


Author(s):  
Joachim Frank

Compared with images of negatively stained single particle specimens, those obtained by cryo-electron microscopy have the following new features: (a) higher “signal” variability due to a higher variability of particle orientation; (b) reduced signal/noise ratio (S/N); (c) virtual absence of low-spatial-frequency information related to elastic scattering, due to the properties of the phase contrast transfer function (PCTF); and (d) reduced resolution due to the efforts of the microscopist to boost the PCTF at low spatial frequencies, in his attempt to obtain recognizable particle images.


Author(s):  
Marc J.C. de Jong ◽  
Wim M. Busing ◽  
Max T. Otten

Biological materials damage rapidly in the electron beam, limiting the amount of information that can be obtained in the transmission electron microscope. The discovery that observation at cryo temperatures strongly reduces beam damage (in addition to making it unnecessaiy to use chemical fixatives, dehydration agents and stains, which introduce artefacts) has given an important step forward to preserving the ‘live’ situation and makes it possible to study the relation between function, chemical composition and morphology.Among the many cryo-applications, the most challenging is perhaps the determination of the atomic structure. Henderson and co-workers were able to determine the structure of the purple membrane by electron crystallography, providing an understanding of the membrane's working as a proton pump. As far as understood at present, the main stumbling block in achieving high resolution appears to be a random movement of atoms or molecules in the specimen within a fraction of a second after exposure to the electron beam, which destroys the highest-resolution detail sought.


Author(s):  
John Trinickt ◽  
Howard White

The primary force of muscle contraction is thought to involve a change in the myosin head whilst attached to actin, the energy coming from ATP hydrolysis. This change in attached state could either be a conformational change in the head or an alteration in the binding angle made with actin. A considerable amount is known about one bound state, the so-called strongly attached state, which occurs in the presence of ADP or in the absence of nucleotide. In this state, which probably corresponds to the last attached state of the force-producing cycle, the angle between the long axis myosin head and the actin filament is roughly 45°. Details of other attached states before and during power production have been difficult to obtain because, even at very high protein concentration, the complex is almost completely dissociated by ATP. Electron micrographs of the complex in the presence of ATP have therefore been obtained only after chemically cross-linking myosin subfragment-1 (S1) to actin filaments to prevent dissociation. But it is unclear then whether the variability in attachment angle observed is due merely to the cross-link acting as a hinge.We have recently found low ionic-strength conditions under which, without resorting to cross-linking, a high fraction of S1 is bound to actin during steady state ATP hydrolysis. The structure of this complex is being studied by cryo-electron microscopy of hydrated specimens. Most advantages of frozen specimens over ambient temperature methods such as negative staining have already been documented. These include improved preservation and fixation rates and the ability to observe protein directly rather than a surrounding stain envelope. In the present experiments, hydrated specimens have the additional benefit that it is feasible to use protein concentrations roughly two orders of magnitude higher than in conventional specimens, thereby reducing dissociation of weakly bound complexes.


Author(s):  
P.M. Frederik ◽  
K.N.J. Burger ◽  
M.C.A. Stuart ◽  
A.J. Verkleij

Cellular membranes are often composed of phospholipid mixtures in which one or more components have a tendency to adopt a type II non-bilayer lipid structure such as the inverted hexagonal (H||) phase. The formation of a type II non-bilayer intermediate, the inverted lipid micel is proposed as the initial step in membrane fusion (Verkleij 1984, Siegel, 1986). In the various forms of cellular transport mediated by carrier vesicles (e.g. exocytosis, endocytosis) the regulation of membrane fusion, and hence of inverted lipid micel formation, is of vital importance.We studied the phase behaviour of simple and complex lipid mixtures by cryo-electron microscopy to gain more insight in the ultrastructure of different lipid phases (e.g. Pβ’, Lα, H||) and in the complex membrane structures arising after Lα < - > H|| phase changes (e.g. isotropic, cubic). To prepare hydrated thin films a 700 mesh hexagonal grid (without supporting film) was dipped into and withdrawn from a liposome suspension. The excess fluid was blotted against filter paper and the thin films that form between the bars of the specimen grid were immediately (within 1 second) vitrified by plunging of the carrier grids into ethane cooled to its melting point by liquid nitrogen (Dubochet et al., 1982). Surface active molecules such as phospholipids play an important role in the formation and thinning of these aqueous thin films (Frederik et al., 1989). The formation of two interfacial layers at the air-water interfaces requires transport of surface molecules from the suspension as well as the orientation of these molecules at the interfaces. During the spontaneous thinning of the film the interfaces approach each other, initially driven by capillary forces later by Van der Waals attraction. The process of thinning results in the sorting by size of the suspended material and is also accompanied by a loss of water from the thinner parts of the film. This loss of water may result in the concentration and eventually in partial dehydration of suspended material even if thin films are vitrified within 1 sec after their formation. Film formation and vitrification were initiated at temperatures between 20-60°C by placing die equipment in an incubator provided widi port holes for the necessary manipulations. Unilamellar vesicles were made from dipalmitoyl phosphatidyl choline (DPPC) by an extrusion method and showed a smooth (Lα) or a rippled (PB’.) structure depending on the temperature of the suspensions and the temperature of film formation (50°C resp. 39°C) prior to vitrification. The thermotropic phases of hydrated phospholipids are thus faithfully preserved in vitrified thin films (fig. a,b). Complex structures arose when mixtures of dioleoylphosphatidylethanol-amine (DOPE), dioleoylphosphatidylcholine (DOPC) and cholesterol (molar ratio 3/1/2) are heated and used for thin film formation. The tendency of DOPE to adopt the H|| phase is responsible for the formation of complex structures in this lipid mixture. Isotropic and cubic areas (fig. c,d) having a bilayer structure are found in coexistence with H|| cylinders (fig. e). The formation of interlamellar attachments (ILA’s) as observed in isotropic and cubic structures is also thought to be of importance in biological fusion events. Therefore the study of the fusion activity of influenza B virus with liposomes (DOPE/DOPC/cholesterol/ganglioside in a molar ratio 1/1/2/0.2) was initiated. At neutral pH only adsorption of virus to liposomes was observed whereas 2 minutes after a drop in pH (7.4 - > 5.4) fusion between virus and liposome membranes was demonstrated (fig. f). The micrographs illustrate the exciting potential of cryo-electron microscopy to study lipid-lipid and lipid-protein interactions in hydrated specimens.


Sign in / Sign up

Export Citation Format

Share Document