scholarly journals A DOT1B/Ribonuclease H2 Protein Complex Is Involved in R-Loop Processing, Genomic Integrity, and Antigenic Variation in Trypanosoma brucei

mBio ◽  
2021 ◽  
Author(s):  
Nicole Eisenhuth ◽  
Tim Vellmer ◽  
Elisa T. Rauh ◽  
Falk Butter ◽  
Christian J. Janzen

Trypanosoma brucei is a unicellular parasite that causes devastating diseases like sleeping sickness in humans and the “nagana” disease in cattle in Africa. Fundamental to the establishment and prolongation of a trypanosome infection is the parasite's ability to escape the mammalian host's immune system by antigenic variation, which relies on periodic changes of a protein surface coat.

Open Biology ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 190182 ◽  
Author(s):  
Núria Sima ◽  
Emilia Jane McLaughlin ◽  
Sebastian Hutchinson ◽  
Lucy Glover

African trypanosomes escape the mammalian immune response by antigenic variation—the periodic exchange of one surface coat protein, in Trypanosoma brucei the variant surface glycoprotein (VSG), for an immunologically distinct one. VSG transcription is monoallelic, with only one VSG being expressed at a time from a specialized locus, known as an expression site. VSG switching is a predominantly recombination-driven process that allows VSG sequences to be recombined into the active expression site either replacing the currently active VSG or generating a ‘new’ VSG by segmental gene conversion. In this review, we describe what is known about the factors that influence this process, focusing specifically on DNA repair and recombination.


2011 ◽  
Vol 10 (7) ◽  
pp. 985-997 ◽  
Author(s):  
Karina Mariño ◽  
M. Lucia Sampaio Güther ◽  
Amy K. Wernimont ◽  
Wei Qiu ◽  
Raymond Hui ◽  
...  

ABSTRACT A gene predicted to encode Trypanosoma brucei glucosamine 6-phosphate N -acetyltransferase ( TbGNA1 ; EC 2.3.1.4) was cloned and expressed in Escherichia coli . The recombinant protein was enzymatically active, and its high-resolution crystal structure was obtained at 1.86 Å. Endogenous TbGNA1 protein was localized to the peroxisome-like microbody, the glycosome. A bloodstream-form T. brucei GNA1 conditional null mutant was constructed and shown to be unable to sustain growth in vitro under nonpermissive conditions, demonstrating that there are no metabolic or nutritional routes to UDP-GlcNAc other than via GlcNAc-6-phosphate. Analysis of the protein glycosylation phenotype of the TbGNA1 mutant under nonpermissive conditions revealed that poly- N -acetyllactosamine structures were greatly reduced in the parasite and that the glycosylation profile of the principal parasite surface coat component, the variant surface glycoprotein (VSG), was modified. The significance of results and the potential of TbGNA1 as a novel drug target for African sleeping sickness are discussed.


Parasitology ◽  
1989 ◽  
Vol 99 (S1) ◽  
pp. S37-S47 ◽  
Author(s):  
K. Vickerman

SUMMARYSurvival of the trypanosome (Trypanosoma brucei) population in the mammalian body depends upon paced stimulation of the host's humoral immune response by different antigenic variants and serial sacrifice of the dominant variant (homotype) so that minority variants (heterotypes) can continue the infection and each become a homotype in its turn. New variants are generated by a spontaneous switch in gene expression so that the trypanosome puts on a surface coat of a glycoprotein differing in antigenic specificity from its predecessor. Homotypes appear in a characteristic order for a given trypanosome clone but what determines this order and the pacing of homotype generation so that the trypanosome does not quickly exhaust its repertoire of variable antigens, is not clear. The tendency of some genes to be expressed more frequently than others may reflect the location within the genome and mode of expression of the genes concerned and may influence homotype succession. Differences in the doubling time of different variants or in the rate at which trypanosomes belonging to a particular variant differentiate into non-dividing (vector infective) stumpy forms have also been invoked to explain how a heterotype's growth characteristics may determine when it becomes a homotype. Recent estimations of the frequency of variable antigen switching in trypanosome populations after transmission through the tsetse fly vector, however, suggest a much higher figure (0·97–2·2 × 10−3switches per cell per generation) than that obtained for syringe-passed infections (10−5–10−7switches per cell per generation) and it seems probable that most of the variable antigen genes are expressed as minority variable antigen types very early in the infection. Instability of expression is a feature of trypanosome clones derived from infective tsetse salivary gland (metacyclic) trypanosomes and it is suggested that high switching rates in tsetse-transmitted infections may delay the growth of certain variants to homotype status until later in the infection.


2015 ◽  
Vol 14 (3) ◽  
pp. 196-205 ◽  
Author(s):  
Bibo Li

ABSTRACTHuman-infecting microbial pathogens all face a serious problem of elimination by the host immune response. Antigenic variation is an effective immune evasion mechanism where the pathogen regularly switches its major surface antigen. In many cases, the major surface antigen is encoded by genes from the same gene family, and its expression is strictly monoallelic. Among pathogens that undergo antigenic variation,Trypanosoma brucei(a kinetoplastid), which causes human African trypanosomiasis,Plasmodium falciparum(an apicomplexan), which causes malaria,Pneumocystis jirovecii(a fungus), which causes pneumonia, andBorrelia burgdorferi(a bacterium), which causes Lyme disease, also express their major surface antigens from loci next to the telomere. Except forPlasmodium, DNA recombination-mediated gene conversion is a major pathway for surface antigen switching in these pathogens. In the last decade, more sophisticated molecular and genetic tools have been developed inT. brucei, and our knowledge of functions of DNA recombination in antigenic variation has been greatly advanced. VSG is the major surface antigen inT. brucei. In subtelomeric VSG expression sites (ESs),VSGgenes invariably are flanked by a long stretch of upstream 70-bp repeats. Recent studies have shown that DNA double-strand breaks (DSBs), particularly those in 70-bp repeats in the active ES, are a natural potent trigger for antigenic variation inT. brucei. In addition, telomere proteins can influence VSG switching by reducing the DSB amount at subtelomeric regions. These findings will be summarized and their implications will be discussed in this review.


2013 ◽  
Vol 82 (1) ◽  
pp. 140-151 ◽  
Author(s):  
Eili Y. Klein ◽  
Andrea L. Graham ◽  
Manuel Llinás ◽  
Simon Levin

ABSTRACTThe within-host dynamics of an infection with the malaria parasitePlasmodium falciparumare the result of a complex interplay between the host immune system and parasite. Continual variation of theP. falciparumerythrocyte membrane protein (PfEMP1) antigens displayed on the surface of infected red blood cells enables the parasite to evade the immune system and prolong infection. Despite the importance of antigenic variation in generating the dynamics of infection, our understanding of the mechanisms by which antigenic variation generates long-term chronic infections is still limited. We developed a model to examine the role of cross-reactivity in generating infection dynamics that are comparable to those of experimental infections. The hybrid computational model we developed is attuned to the biology of malaria by mixing discrete replication events, which mimics the synchrony of parasite replication and invasion, with continuous interaction with the immune system. Using simulations, we evaluated the dynamics of a single malaria infection over time. We then examined three major mechanisms by which the dynamics of a malaria infection can be structured: cross-reactivity of the immune response to PfEMP1, differences in parasite clearance rates, and heterogeneity in the rate at which antigens switch. The results of our simulations demonstrate that cross-reactive immune responses play a primary role in generating the dynamics observed in experimentally untreated infections and in lengthening the period of infection. Importantly, we also find that it is the primary response to the initially expressed PfEMP1, or small subset thereof, that structures the cascading cross-immune dynamics and allows for elongation of the infection.


1997 ◽  
Vol 139 (1) ◽  
pp. 103-114 ◽  
Author(s):  
Helena Webb ◽  
Nicola Carnall ◽  
Luc Vanhamme ◽  
Sylvie Rolin ◽  
Jakke Van Den Abbeele ◽  
...  

In the mammalian host, the cell surface of Trypanosoma brucei is protected by a variant surface glycoprotein that is anchored in the plasma membrane through covalent attachment of the COOH terminus to a glycosylphosphatidylinositol. The trypanosome also contains a phospholipase C (GPI-PLC) that cleaves this anchor and could thus potentially enable the trypanosome to shed the surface coat of VSG. Indeed, release of the surface VSG can be observed within a few minutes on lysis of trypanosomes in vitro. To investigate whether the ability to cleave the membrane anchor of the VSG is an essential function of the enzyme in vivo, a GPI-PLC null mutant trypanosome has been generated by targeted gene deletion. The mutant trypanosomes are fully viable; they can go through an entire life cycle and maintain a persistent infection in mice. Thus the GPI-PLC is not an essential activity and is not necessary for antigenic variation. However, mice infected with the mutant trypanosomes have a reduced parasitemia and survive longer than those infected with control trypanosomes. This phenotype is partially alleviated when the null mutant is modified to express low levels of GPI-PLC.


mSphere ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Lucy Glover

ABSTRACT Lucy Glover’s research focuses on the role of DNA repair and recombination in antigenic variation in the parasite Trypanosoma brucei, the causative agent of both human and animal African trypanosomiasis. In this mSphere of Influence article, she reflects on how “A CRISPR-based approach for proteomic analysis of a single genomic locus” by Z. J. Waldrip, S. D. Byrum, A. J. Storey, J. Gao, et al. (Epigenetics 9:1207–1211, 2014, https://doi.org/10.4161/epi.29919) made an impact on her research by taking the precision of CRISPR-Cas9 and repurposing it to look at single-locus proteomics. By using this technology in trypanosomes, Dr. Glover and her colleagues could study the dynamic accumulation of repair proteins after specific damage and gain insight into how the location of a double-strand break (DSB) dictates repair pathway choice and how this may influence immune evasion in these parasites.


1979 ◽  
Vol 37 (1) ◽  
pp. 287-302
Author(s):  
J.D. Barry

Pathogenic trypanosomes undergo antigenic variation, whereby the glycoprotein molecules constituting the cell coat are changed, the parasite thus evading the host's immune response. On application of homologous antiserum in indirect immunofluorescence to a given variable antigen type of Trypanosoma brucei, the surface variable antigen moves to the flagellar pocket region, which overlies the Golgi apparatus. This redistribution, or capping, is temperature-dependent, occurring at 37 degrees C but not at 0-4 degree C. Patching does not occur at either temperature. Immediately after capping no homologous or heterologous variable antigen, or host plasma or blood cell antigens, can be detected by immunofluorescence on the cell surface outside the cap; only trypanosome membrane common antigens can be found. It seems unlikely for two reasons that this antibody-induced redistribution is relevant to antigenic variation. Capping of the coat requires the indirect, rather than the direct, immunofluorescent method; a single layer of antibody, in nature, would appear to be ineffective. Also, capping of variable antigen of one type is followed within 3 h by appearance of antigen of the same, and not another, type. The necessity for 2 antibody layers is usually thought of as meaning that the individual molecules of the cell surface antigen are spaced further apart than the binding sites of an individual antibody molecule, so that the necessary cross-linked lattice cannot be formed, but on T. brucei the surface variable antigen molecules are very closely packed. It is proposed that one layer of antibody is ineffective for steric reasons; the dimensions of the exposed face of each variable antigen molecule may not permit the binding of more than one molecule of immunoglobulin, or perhaps the antigen molecules are so closely packed that most of the antigenic determinants are hidden from antibodies. To test this hypothesis, an attempt was made to cap variable antigen on trypanosomes transforming in vitro from the bloodstream to the procyclic (insect midgut) stage; such forms have a much less densely packed surface coat. Patching was observed, indicative of lattice formation, but these trypanosomes did not survive the in vitro manipulation long enough to permit any possible capping. T. brucei differs structurally from most other eukaryotic cells. It has no detectable microfilaments under the plasma membrane, except at the desmosomes in the region of flagellar binding, and it also has a pellicular cortex of microtubules. Capping of its surface antigen would appear then to differ from that on mammalian cells, either in the cellular components involved or in that specialized areas of the plasma membrane are involved.


2019 ◽  
Vol 202 (3) ◽  
Author(s):  
Andrew F. Voter ◽  
Melanie M. Callaghan ◽  
Ramreddy Tippana ◽  
Sua Myong ◽  
Joseph P. Dillard ◽  
...  

ABSTRACT The obligate human pathogen Neisseria gonorrhoeae alters its cell surface antigens to evade the immune system in a process known as antigenic variation (AV). During pilin AV, portions of the expressed pilin gene (pilE) are replaced with segments of silent pilin genes (pilS) through homologous recombination. The pilE-pilS exchange is initiated by formation of a parallel guanine quadruplex (G4) structure near the pilE gene, which recruits the homologous recombination machinery. The RecQ helicase, which has been proposed to aid AV by unwinding the pilE G4 structure, is an important component of this machinery. However, RecQ also promotes homologous recombination through G4-independent duplex DNA unwinding, leaving the relative importance of its G4 unwinding activity unclear. Previous investigations revealed a guanine-specific pocket (GSP) on the surface of RecQ that is required for G4, but not duplex, DNA unwinding. To determine whether RecQ-mediated G4 resolution is required for AV, N. gonorrhoeae strains that encode a RecQ GSP variant that cannot unwind G4 DNA were created. In contrast to the hypothesis that G4 unwinding by RecQ is important for AV, the RecQ GSP variant N. gonorrhoeae strains had normal AV levels. Analysis of a purified RecQ GSP variant confirmed that it retained duplex DNA unwinding activity but had lost its ability to unwind antiparallel G4 DNA. Interestingly, neither the GSP-deficient RecQ variant nor the wild-type RecQ could unwind the parallel pilE G4 nor the prototypical c-myc G4. Based on these results, we conclude that N. gonorrhoeae AV occurs independently of RecQ-mediated pilE G4 resolution. IMPORTANCE The pathogenic bacteria Neisseria gonorrhoeae avoids clearance by the immune system through antigenic variation (AV), the process by which immunogenic surface features of the bacteria are exchanged for novel variants. RecQ helicase is critical in AV and its role has been proposed to stem from its ability to unwind a DNA secondary structure known as a guanine quadruplex (G4) that is central to AV. In this work, we demonstrate that the role of RecQ in AV is independent of its ability to resolve G4s and that RecQ is incapable of unwinding the G4 in question. We propose a new model of RecQ’s role in AV where the G4 might recruit or orient RecQ to facilitate homologous recombination.


2005 ◽  
Vol 73 (5) ◽  
pp. 2690-2697 ◽  
Author(s):  
Melissa E. Dubois ◽  
Karen P. Demick ◽  
John M. Mansfield

ABSTRACT Host resistance to African trypanosomiasis is partially dependent on an early and strong T-independent B-cell response against the variant surface glycoprotein (VSG) coat expressed by trypanosomes. The repetitive array of surface epitopes displayed by a monotypic surface coat, in which identical VSG molecules are closely packed together in a uniform architectural display, cross-links cognate B-cell receptors and initiates T-independent B-cell activation events. However, this repetitive array of identical VSG epitopes is altered during the process of antigenic variation, when former and nascent VSG proteins are transiently expressed together in a mosaic surface coat. Thus, T-independent B-cell recognition of the trypanosome surface coat may be disrupted by the introduction of heterologous VSG molecules into the coat structure. To address this hypothesis, we transformed Trypanosoma brucei rhodesiense LouTat 1 with the 117 VSG gene from Trypanosoma brucei brucei MiTat 1.4 in order to produce VSG double expressers; coexpression of the exogenous 117 gene along with the endogenous LouTat 1 VSG gene resulted in the display of a mosaic VSG coat. Results presented here demonstrate that the host's ability to produce VSG-specific antibodies and activate B cells during early infection with VSG double expressers is compromised relative to that during infection with the parental strain, which displays a monotypic coat. These findings suggest a previously unrecognized mechanism of immune response evasion in which coat-switching trypanosomes fail to directly activate B cells until coat VSG homogeneity is achieved. This process affords an immunological advantage to trypanosomes during the process of antigenic variation.


Sign in / Sign up

Export Citation Format

Share Document