scholarly journals Streptolysin O and NAD-Glycohydrolase Prevent Phagolysosome Acidification and Promote Group A Streptococcus Survival in Macrophages

mBio ◽  
2014 ◽  
Vol 5 (5) ◽  
Author(s):  
Benedicte Bastiat-Sempe ◽  
John F. Love ◽  
Natalie Lomayesva ◽  
Michael R. Wessels

ABSTRACTGroup AStreptococcus(GAS,Streptococcus pyogenes) is an ongoing threat to human health as the agent of streptococcal pharyngitis, skin and soft tissue infections, and life-threatening conditions such as necrotizing fasciitis and streptococcal toxic shock syndrome. In animal models of infection, macrophages have been shown to contribute to host defense against GAS infection. However, as GAS can resist killing by macrophagesin vitroand induce macrophage cell death, it has been suggested that GAS intracellular survival in macrophages may enable persistent infection. Using isogenic mutants, we now show that the GAS pore-forming toxin streptolysin O (SLO) and its cotoxin NAD-glycohydrolase (NADase) mediate GAS intracellular survival and cytotoxicity for macrophages. Unexpectedly, the two toxins did not inhibit fusion of GAS-containing phagosomes with lysosomes but rather prevented phagolysosome acidification. SLO served two essential functions, poration of the phagolysosomal membrane and translocation of NADase into the macrophage cytosol, both of which were necessary for maximal GAS intracellular survival. Whereas NADase delivery to epithelial cells is mediated by SLO secreted from GAS bound to the cell surface, in macrophages, the source of SLO and NADase is GAS contained within phagolysosomes. We found that transfer of NADase from the phagolysosome to the macrophage cytosol occurs not by simple diffusion through SLO pores but rather by a specific translocation mechanism that requires the N-terminal translocation domain of NADase. These results illuminate the mechanisms through which SLO and NADase enable GAS to defeat macrophage-mediated killing and provide new insight into the virulence of a major human pathogen.IMPORTANCEMacrophages constitute an important element of the innate immune response to mucosal pathogens. They ingest and kill microbes by phagocytosis and secrete inflammatory cytokines to recruit and activate other effector cells. Group AStreptococcus(GAS,Streptococcus pyogenes), an important cause of pharyngitis and invasive infections, has been shown to resist killing by macrophages. We find that GAS resistance to macrophage killing depends on the GAS pore-forming toxin streptolysin O (SLO) and its cotoxin NAD-glycohydrolase (NADase). GAS bacteria are internalized by macrophage phagocytosis but resist killing by secreting SLO, which damages the phagolysosome membrane, prevents phagolysosome acidification, and translocates NADase from the phagolysosome into the macrophage cytosol. NADase augments SLO-mediated cytotoxicity by depleting cellular energy stores. These findings may explain the nearly universal production of SLO by GAS clinical isolates and the association of NADase with the global spread of a GAS clone implicated in invasive infections.

2009 ◽  
Vol 54 (1) ◽  
pp. 98-102 ◽  
Author(s):  
Masaaki Minami ◽  
Takuya Kamimura ◽  
Masanori Isaka ◽  
Ichiro Tatsuno ◽  
Michio Ohta ◽  
...  

ABSTRACT The administration of high-dose clindamycin (CLI) along with penicillin is recommended for the treatment of streptococcal toxic shock syndrome. However, the prevalence of CLI-resistant Streptococcus pyogenes strains is increasing worldwide, and the effect of CLI on CLI-resistant S. pyogenes strains remains unknown. We aimed to evaluate the effect of CLI on the in vitro production of three major virulent exoproteins, namely, streptolysin O (Slo), NAD glycohydrolase (Nga), and streptokinase (Ska), by CLI-resistant S. pyogenes strains. After the incubation of M1 serotype CLI-resistant S. pyogenes D2TY in the presence of 1 μg/ml CLI, the amounts of Slo, Nga, and Ska and the levels of slo, nga, and ska mRNA in the supernatant were analyzed by Northern blotting and Western blotting, respectively. The results of both assays showed that the production of Slo, Nga, and Ska was higher with CLI treatment than without CLI treatment. We evaluated the role of the sensor kinase CovS, which is involved in the two-component system of S. pyogenes, in the CLI-induced production of these three exoproteins. Northern blotting analysis revealed that CLI induced the expression of covS mRNA in wild-type strain D2TY. Furthermore, both Northern blotting and Western blotting analyses showed that CLI decreased the levels of expression of Slo, Nga, and Ska in isogenic covS mutant D2TYcovS. These results suggest that CLI increases the production of three virulent exoproteins in CLI-resistant S. pyogenes strains via the action of CovS.


2015 ◽  
Vol 83 (8) ◽  
pp. 3035-3042 ◽  
Author(s):  
Ramona Nitzsche ◽  
Maik Rosenheinrich ◽  
Bernd Kreikemeyer ◽  
Sonja Oehmcke-Hecht

Severe invasive infectious diseases remain a major and life-threatening health problem. In serious cases, a systemic activation of the coagulation cascade is a critical complication that is associated with high mortality rates. We report here that streptokinase, a group A streptococcal plasminogen activator, triggers the activation of the human contact system. Activation of contact system factors at the surface of theStreptococcus pyogenesserotype M49 is dependent on streptokinase and plasminogen. Our results also show that secreted streptokinase is an efficient contact system activator, independent from a contact surface. This results in the processing of high-molecular-weight kininogen and the release of bradykinin, a potent vascular mediator. We further investigated whether the ability of 50 different clinicalS. pyogenesisolates to activate the contact system is associated with an invasive phenotype. The data reveal that isolates from invasive infections trigger an activation of the contact system more potently than strains isolated from noninvasive infections. The present study gives new insights into the mechanisms by whichS. pyogenestriggers the human contact system and stresses the function of soluble and surface located plasmin exploited as a group A streptococcal virulence factor through the action of streptokinase.


2008 ◽  
Vol 57 (11) ◽  
pp. 1383-1388 ◽  
Author(s):  
Takeaki Wajima ◽  
Somay Y. Murayama ◽  
Katsuhiko Sunaoshi ◽  
Eiichi Nakayama ◽  
Keisuke Sunakawa ◽  
...  

To determine the prevalence of macrolide antibiotic and levofloxacin resistance in infections with Streptococcus pyogenes (group A streptococcus or GAS), strains were collected from 45 medical institutions in various parts of Japan between October 2003 and September 2006. Four hundred and eighty-two strains from patients with GAS infections were characterized genetically. Strains were classified into four groups according to the type of infection: invasive infections (n=74) including sepsis, cellulitis and toxic-shock-like syndrome; acute otitis media (AOM; n=23); abscess (n=53); and pharyngotonsillitis (n=332). Among all strains, 32 emm types were identified; emm1 was significantly more common in invasive infections (39.2 %) and AOM (43.5 %) than in abscesses (3.8 %) or pharyngotonsillitis (10.2 %). emm12 and emm4 each accounted for 23.5 % of pharyngotonsillitis cases. Susceptibility of GAS strains to eight β-lactam agents was excellent, with MICs of 0.0005–0.063 μg ml−1. Macrolide-resistant strains accounted for 16.2 % of all strains, while the percentages of strains possessing the resistance genes erm(A), erm(B) and mef(A) were 2.5 %, 6.2 % and 7.5 %, respectively. Although no strains with high resistance to levofloxacin were found, strains with an MIC of 2–4 μg ml−1 (17.4 %) had amino acid substitutions at either Ser-79 or Asp-83 in ParC. These levofloxacin-intermediately resistant strains included 16 emm types, but macrolide-resistant strains were more likely than others to represent certain emm types.


2015 ◽  
Vol 197 (19) ◽  
pp. 3191-3205 ◽  
Author(s):  
Yun-Juan Bao ◽  
Zhong Liang ◽  
Jeffrey A. Mayfield ◽  
Shaun W. Lee ◽  
Victoria A. Ploplis ◽  
...  

ABSTRACTThe two-componentcontrolofvirulence (Cov) regulator (R)-sensor (S) (CovRS) regulates the virulence ofStreptococcus pyogenes(group AStreptococcus[GAS]). Inactivation of CovS during infection switches the pathogenicity of GAS to a more invasive form by regulating transcription of diverse virulence genes via CovR. However, the manner in which CovRS controls virulence through expression of extended gene families has not been fully determined. In the current study, the CovS-regulated gene expression profiles of a hypervirulentemm23GAS strain (M23ND/CovS negative [M23ND/CovS−]) and a noninvasive isogenic strain (M23ND/CovS+), under different growth conditions, were investigated. RNA sequencing identified altered expression of ∼349 genes (18% of the chromosome). The data demonstrated that M23ND/CovS−achieved hypervirulence by allowing enhanced expression of genes responsible for antiphagocytosis (e.g.,hasABC), by abrogating expression of toxin genes (e.g.,speB), and by compromising gene products with dispensable functions (e.g.,sfb1). Among these genes, several (e.g.,parEandparC) were not previously reported to be regulated by CovRS. Furthermore, the study revealed that CovS also modulated the expression of a broad spectrum of metabolic genes that maximized nutrient utilization and energy metabolism during growth and dissemination, where the bacteria encounter large variations in available nutrients, thus restructuring metabolism of GAS for adaption to diverse growth environments. From constructing a genome-scale metabolic model, we identified 16 nonredundant metabolic gene modules that constitute unique nutrient sources. These genes were proposed to be essential for pathogen growth and are likely associated with GAS virulence. The genome-wide prediction of genes associated with virulence identifies new candidate genes that potentially contribute to GAS virulence.IMPORTANCEThe CovRS system modulates transcription of ∼18% of the genes in theStreptococcus pyogenesgenome. Mutations that inactivate CovR or CovS enhance the virulence of this bacterium. We determined complete transcriptomes of a naturally CovS-inactivated invasive deep tissue isolate of anemm23strain ofS. pyogenes(M23ND) and its complemented avirulent variant (CovS+). We identified diverse virulence genes whose altered expression revealed a genetic switching of a nonvirulent form of M23ND to a highly virulent strain. Furthermore, we also systematically uncovered for the first time the comparative levels of expression of a broad spectrum of metabolic genes, which reflected different metabolic needs of the bacterium as it invaded deeper tissue of the human host.


1947 ◽  
Vol 86 (3) ◽  
pp. 193-202 ◽  
Author(s):  
Alan W. Bernheimer ◽  
G. L. Cantoni

1. The susceptibility of mice to the lethal effect of preparations containing the oxygen-labile hemolysin (streptolysin O) of group A hemolytic streptococci has been studied. Injection of a single sublethal dose of the streptococcal preparation causes the development of resistance to the effect of a lethal dose injected subsequently. 2. Resistance is demonstrable 3 to 6 hours after the injection of the streptococcal preparation, persists for approximately 30 hours, and then disappears. 3. Resistance induced by the streptococcal preparation, although relatively specific, is directed not only against the streptococcal preparation but also against saponin. Mice made refractory to the streptococcal preparation and to saponin exhibit normal susceptibility to a number of other toxic agents, with the possible exception of the alpha toxin of Cl. welchii. 4. Mice injected with a sublethal dose of saponin develop resistance to the effect of a lethal dose of either saponin or the streptococcal preparation. 5. Resistance depends upon processes distinct from those underlying classical antitoxic immunity.


2020 ◽  
Vol 202 (11) ◽  
Author(s):  
Katelyn E. Carothers ◽  
Zhong Liang ◽  
Jeffrey Mayfield ◽  
Deborah L. Donahue ◽  
Mijoon Lee ◽  
...  

ABSTRACT Streptococcus pyogenes, or group A Streptococcus (GAS), is both a pathogen and an asymptomatic colonizer of human hosts and produces a large number of surface-expressed and secreted factors that contribute to a variety of infection outcomes. The GAS-secreted cysteine protease SpeB has been well studied for its effects on the human host; however, despite its broad proteolytic activity, studies on how this factor is utilized in polymicrobial environments are lacking. Here, we utilized various forms of SpeB protease to evaluate its antimicrobial and antibiofilm properties against the clinically important human colonizer Staphylococcus aureus, which occupies niches similar to those of GAS. For our investigation, we used a skin-tropic GAS strain, AP53CovS+, and its isogenic ΔspeB mutant to compare the production and activity of native SpeB protease. We also generated active and inactive forms of recombinant purified SpeB for functional studies. We demonstrate that SpeB exhibits potent biofilm disruption activity at multiple stages of S. aureus biofilm formation. We hypothesized that the surface-expressed adhesin SdrC in S. aureus was cleaved by SpeB, which contributed to the observed biofilm disruption. Indeed, we found that SpeB cleaved recombinant SdrC in vitro and in the context of the full S. aureus biofilm. Our results suggest an understudied role for the broadly proteolytic SpeB as an important factor for GAS colonization and competition with other microorganisms in its niche. IMPORTANCE Streptococcus pyogenes (GAS) causes a range of diseases in humans, ranging from mild to severe, and produces many virulence factors in order to be a successful pathogen. One factor produced by many GAS strains is the protease SpeB, which has been studied for its ability to cleave and degrade human proteins, an important factor in GAS pathogenesis. An understudied aspect of SpeB is the manner in which its broad proteolytic activity affects other microorganisms that co-occupy niches similar to that of GAS. The significance of the research reported herein is the demonstration that SpeB can degrade the biofilms of the human pathogen Staphylococcus aureus, which has important implications for how SpeB may be utilized by GAS to successfully compete in a polymicrobial environment.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Stephan Brouwer ◽  
Timothy C. Barnett ◽  
Diane Ly ◽  
Katherine J. Kasper ◽  
David M. P. De Oliveira ◽  
...  

Abstract The re-emergence of scarlet fever poses a new global public health threat. The capacity of North-East Asian serotype M12 (emm12) Streptococcus pyogenes (group A Streptococcus, GAS) to cause scarlet fever has been linked epidemiologically to the presence of novel prophages, including prophage ΦHKU.vir encoding the secreted superantigens SSA and SpeC and the DNase Spd1. Here, we report the molecular characterization of ΦHKU.vir-encoded exotoxins. We demonstrate that streptolysin O (SLO)-induced glutathione efflux from host cellular stores is a previously unappreciated GAS virulence mechanism that promotes SSA release and activity, representing the first description of a thiol-activated bacterial superantigen. Spd1 is required for resistance to neutrophil killing. Investigating single, double and triple isogenic knockout mutants of the ΦHKU.vir-encoded exotoxins, we find that SpeC and Spd1 act synergistically to facilitate nasopharyngeal colonization in a mouse model. These results offer insight into the pathogenesis of scarlet fever-causing GAS mediated by prophage ΦHKU.vir exotoxins.


2019 ◽  
Vol 216 (7) ◽  
pp. 1615-1629 ◽  
Author(s):  
Andreas Naegeli ◽  
Eleni Bratanis ◽  
Christofer Karlsson ◽  
Oonagh Shannon ◽  
Raja Kalluru ◽  
...  

Streptococcus pyogenes (Group A streptococcus; GAS) is a human pathogen causing diseases from uncomplicated tonsillitis to life-threatening invasive infections. GAS secretes EndoS, an endoglycosidase that specifically cleaves the conserved N-glycan on IgG antibodies. In vitro, removal of this glycan impairs IgG effector functions, but its relevance to GAS infection in vivo is unclear. Using targeted mass spectrometry, we characterized the effects of EndoS on host IgG glycosylation during the course of infections in humans. Substantial IgG glycan hydrolysis occurred at the site of infection and systemically in the severe cases. We demonstrated decreased resistance to phagocytic killing of GAS lacking EndoS in vitro and decreased virulence in a mouse model of invasive infection. This is the first described example of specific bacterial IgG glycan hydrolysis during infection and thereby verifies the hypothesis that EndoS modifies antibodies in vivo. This mechanisms of immune evasion could have implications for treatment of severe GAS infections and for future efforts at vaccine development.


2012 ◽  
Vol 56 (11) ◽  
pp. 5661-5666 ◽  
Author(s):  
C. Silva-Costa ◽  
A. Friães ◽  
M. Ramirez ◽  
J. Melo-Cristino ◽  

ABSTRACTA steady decline in macrolide resistance amongStreptococcus pyogenes(group A streptococci [GAS]) in Portugal was reported during 1999 to 2006. This was accompanied by alterations in the prevalence of macrolide resistance phenotypes and in the clonal composition of the population. In order to test whether changes in the macrolide-resistant population reflected the same changing patterns of the overall population, we characterized both macrolide-susceptible and -resistant GAS associated with a diagnosis of tonsillo-pharyngitis recovered in the period from 2000 to 2005 in Portugal. Pulsed-field gel electrophoresis (PFGE) profiling was the best predictor ofemmtype and the only typing method that could discriminate clones associated with macrolide resistance and susceptibility within eachemmtype. Six PFGE clusters were significantly associated with macrolide susceptibility: T3-emm3-ST406, T4-emm4-ST39, T1-emm1-ST28, T6-emm6-ST382, B3264-emm89-ST101/ST408, and T2-emm2-ST55. Four PFGE clusters were associated with macrolide resistance: T4-emm4-ST39, T28-emm28-ST52, T12-emm22-ST46, and T1-emm1-ST28. We found no evidence for frequent ongoing horizontal transfer of macrolide resistance determinants. The diversity of the macrolide-resistant population was lower than that of susceptible isolates. The differences found between the two populations suggest that the macrolide-resistant population of GAS has its own dynamics, independent of the behavior of the susceptible population.


Sign in / Sign up

Export Citation Format

Share Document