scholarly journals Streptococcus pyogenes evades adaptive immunity through specific IgG glycan hydrolysis

2019 ◽  
Vol 216 (7) ◽  
pp. 1615-1629 ◽  
Author(s):  
Andreas Naegeli ◽  
Eleni Bratanis ◽  
Christofer Karlsson ◽  
Oonagh Shannon ◽  
Raja Kalluru ◽  
...  

Streptococcus pyogenes (Group A streptococcus; GAS) is a human pathogen causing diseases from uncomplicated tonsillitis to life-threatening invasive infections. GAS secretes EndoS, an endoglycosidase that specifically cleaves the conserved N-glycan on IgG antibodies. In vitro, removal of this glycan impairs IgG effector functions, but its relevance to GAS infection in vivo is unclear. Using targeted mass spectrometry, we characterized the effects of EndoS on host IgG glycosylation during the course of infections in humans. Substantial IgG glycan hydrolysis occurred at the site of infection and systemically in the severe cases. We demonstrated decreased resistance to phagocytic killing of GAS lacking EndoS in vitro and decreased virulence in a mouse model of invasive infection. This is the first described example of specific bacterial IgG glycan hydrolysis during infection and thereby verifies the hypothesis that EndoS modifies antibodies in vivo. This mechanisms of immune evasion could have implications for treatment of severe GAS infections and for future efforts at vaccine development.

2019 ◽  
Author(s):  
Andreas Naegeli ◽  
Eleni Bratanis ◽  
Christofer Karlsson ◽  
Oonagh Shannon ◽  
Raja Kalluru ◽  
...  

AbstractStreptococcus pyogenes (Group A streptococcus, GAS) is an important human pathogen responsible for a wide variety of diseases from uncomplicated tonsillitis to life-threatening invasive infections. GAS secretes EndoS, an endoglycosidase able to specifically cleave the conserved N-glycan on human IgG antibodies. In vitro, removal of this glycan impairs IgG effector functions but its relevance to GAS infection in vivo is unclear. Using targeted mass spectrometry, we were able to characterize the effects of EndoS on host IgG glycosylation during the course of natural infections in human patients. We found substantial IgG glycan hydrolysis locally at site of infection as well as systemically in the most severe cases. Using these findings we were able to set up appropriate model systems to demonstrate decreased resistance to phagocytic killing of GAS lacking EndoS in vitro, as well as decreased virulence in a mouse model of invasive infection. This study represents the first described example of specific bacterial IgG glycan hydrolysis during infection and highlights the importance of IgG glycan hydrolysis for streptococcal pathogenesis. We thereby offer new insights into the mechanism of immune evasion employed by this pathogen with clear implications for treatment of severe GAS infections and future efforts at vaccine development.


2021 ◽  
Vol 22 (21) ◽  
pp. 11617
Author(s):  
Nina Tsao ◽  
Ya-Chu Chang ◽  
Sung-Yuan Hsieh ◽  
Tang-Chi Li ◽  
Ching-Chen Chiu ◽  
...  

Streptococcus pyogenes (group A Streptococcus (GAS) is an important human pathogen that can cause severe invasive infection, such as necrotizing fasciitis and streptococcal toxic shock syndrome. The mortality rate of streptococcal toxic shock syndrome ranges from 20% to 50% in spite of antibiotics administration. AR-12, a pyrazole derivative, has been reported to inhibit the infection of viruses, intracellular bacteria, and fungi. In this report, we evaluated the bactericidal activities and mechanisms of AR-12 on GAS infection. Our in vitro results showed that AR-12 dose-dependently reduced the GAS growth, and 2.5 μg/mL of AR-12 significantly killed GAS within 2 h. AR-12 caused a remarkable reduction in nucleic acid and protein content of GAS. The expression of heat shock protein DnaK and streptococcal exotoxins was also inhibited by AR-12. Surveys of the GAS architecture by scanning electron microscopy revealed that AR-12-treated GAS displayed incomplete septa and micro-spherical structures protruding out of cell walls. Moreover, the combination of AR-12 and gentamicin had a synergistic antibacterial activity against GAS replication for both in vitro and in vivo infection. Taken together, these novel findings obtained in this study may provide a new therapeutic strategy for invasive GAS infection.


2003 ◽  
Vol 71 (12) ◽  
pp. 7043-7052 ◽  
Author(s):  
Sean D. Reid ◽  
Alison G. Montgomery ◽  
Jovanka M. Voyich ◽  
Frank R. DeLeo ◽  
Benfang Lei ◽  
...  

ABSTRACT Leucine-rich repeats (LRR) characterize a diverse array of proteins and function to provide a versatile framework for protein-protein interactions. Importantly, each of the bacterial LRR proteins that have been well described, including those of Listeria monocytogenes, Yersinia pestis, and Shigella flexneri, have been implicated in virulence. Here we describe an 87.4-kDa group A Streptococcus (GAS) protein (designated Slr, for streptococcal leucine-rich) containing 10 1/2 sequential units of a 22-amino-acid C-terminal LRR homologous to the LRR of the L. monocytogenes internalin family of proteins. In addition to the LRR domain, slr encodes a gram-positive signal secretion sequence characteristic of a lipoprotein and a putative N-terminal domain with a repeated histidine triad motif (HxxHxH). Real-time reverse transcriptase PCR assays indicated that slr is transcribed abundantly in vitro in the exponential phase of growth. Flow cytometry confirmed that Slr was attached to the GAS cell surface. Western immunoblot analysis of sera obtained from 80 patients with invasive infections, noninvasive soft tissue infections, pharyngitis, and rheumatic fever indicated that Slr is produced in vivo. An isogenic mutant strain lacking slr was significantly less virulent in an intraperitoneal mouse model of GAS infection and was significantly more susceptible to phagocytosis by human polymorphonuclear leukocytes. These studies characterize the first GAS LRR protein as an extracellular virulence factor that contributes to pathogenesis and may participate in evasion of the innate host defense.


mBio ◽  
2013 ◽  
Vol 4 (4) ◽  
Author(s):  
Cheryl Y. M. Okumura ◽  
Ericka L. Anderson ◽  
Simon Döhrmann ◽  
Dan N. Tran ◽  
Joshua Olson ◽  
...  

ABSTRACT The Mac/IdeS protein of group A Streptococcus (GAS) is a secreted cysteine protease with cleavage specificity for IgG and is highly expressed in the GAS serotype M1T1 clone, which is the serotype most frequently isolated from patients with life-threatening invasive infections. While studies of Mac/IdeS with recombinant protein have shown that the protein can potentially prevent opsonophagocytosis of GAS by neutrophils, the role of the protein in immune evasion as physiologically produced by the living organism has not been studied. Here we examined the contribution of Mac/IdeS to invasive GAS disease by generating a mutant lacking Mac/IdeS in the hyperinvasive M1T1 background. While Mac/IdeS was highly expressed and proteolytically active in the hyperinvasive strain, elimination of the bacterial protease did not significantly influence GAS phagocytic uptake, oxidative-burst induction, cathelicidin sensitivity, resistance to neutrophil or macrophage killing, or pathogenicity in pre- or postimmune mouse infectious challenges. We conclude that in the highly virulent M1T1 background, Mac/IdeS is not essential for either phagocyte resistance or virulence. Given the conservation of Mac/IdeS and homologues across GAS strains, it is possible that Mac/IdeS serves another important function in GAS ecology or contributes to virulence in other strain backgrounds. IMPORTANCE Group A Streptococcus (GAS) causes human infections ranging from strep throat to life-threatening conditions such as flesh-eating disease and toxic shock syndrome. Common disease-associated clones of GAS can cause both mild and severe infections because of a characteristic mutation and subsequent change in the expression of several genes that develops under host immune selection. One of these genes encodes Mac/IdeS, a protease that has been shown to cleave antibodies important to the immune defense system. In this study, we found that while Mac/IdeS is highly expressed in hypervirulent GAS, it does not significantly contribute to the ability of the bacteria to survive white blood cell killing or produce invasive infection in the mouse. These data underscore the importance of correlating studies on virulence factor function with physiologic expression levels and the complexity of streptococcal pathogenesis and contribute to our overall understanding of how GAS causes disease.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1597
Author(s):  
Thuong Thi Ho ◽  
Van Thi Pham ◽  
Tra Thi Nguyen ◽  
Vy Thai Trinh ◽  
Tram Vi ◽  
...  

Nanodiamond (ND) has recently emerged as a potential nanomaterial for nanovaccine development. Here, a plant-based haemagglutinin protein (H5.c2) of A/H5N1 virus was conjugated with detonation NDs (DND) of 3.7 nm in diameter (ND4), and high-pressure and high-temperature (HPHT) oxidative NDs of ~40–70 nm (ND40) and ~100–250 nm (ND100) in diameter. Our results revealed that the surface charge, but not the size of NDs, is crucial to the protein conjugation, as well as the in vitro and in vivo behaviors of H5.c2:ND conjugates. Positively charged ND4 does not effectively form stable conjugates with H5.c2, and has no impact on the immunogenicity of the protein both in vitro and in vivo. In contrast, the negatively oxidized NDs (ND40 and ND100) are excellent protein antigen carriers. When compared to free H5.c2, H5.c2:ND40, and H5.c2:ND100 conjugates are highly immunogenic with hemagglutination titers that are both 16 times higher than that of the free H5.c2 protein. Notably, H5.c2:ND40 and H5.c2:ND100 conjugates induce over 3-folds stronger production of both H5.c2-specific-IgG and neutralizing antibodies against A/H5N1 than free H5.c2 in mice. These findings support the innovative strategy of using negatively oxidized ND particles as novel antigen carriers for vaccine development, while also highlighting the importance of particle characterization before use.


2016 ◽  
Vol 85 (3) ◽  
Author(s):  
Luis A. Vega ◽  
Kayla M. Valdes ◽  
Ganesh S. Sundar ◽  
Ashton T. Belew ◽  
Emrul Islam ◽  
...  

ABSTRACTAs an exclusively human pathogen,Streptococcus pyogenes(the group A streptococcus [GAS]) has specifically adapted to evade host innate immunity and survive in multiple tissue niches, including blood. GAS can overcome the metabolic constraints of the blood environment and expresses various immunomodulatory factors necessary for survival and immune cell resistance. Here we present our investigation of one such factor, the predicted LysR family transcriptional regulator CpsY. The encoding gene,cpsY, was initially identified as being required for GAS survival in a transposon-site hybridization (TraSH) screen in whole human blood. CpsY is homologous with transcriptional regulators ofStreptococcus mutans(MetR),Streptococcus iniae(CpsY), andStreptococcus agalactiae(MtaR) that regulate methionine transport, amino acid metabolism, resistance to neutrophil-mediated killing, and survivalin vivo. Our investigation indicated that CpsY is involved in GAS resistance to innate immune cells of its human host. However, GAS CpsY does not manifest thein vitrophenotypes of its homologs in other streptococcal species. GAS CpsY appears to regulate a small set of genes that is markedly different from the regulons of its homologs. The differential expression of these genes depends on the growth medium, and CpsY modestly influences their expression. The GAS CpsY regulon includes known virulence factors (mntE,speB,spd,nga[spn],prtS[SpyCEP], andsse) and cell surface-associated factors of GAS (emm1,mur1.2,sibA[cdhA], andM5005_Spy0500). Intriguingly, the loss of CpsY in GAS does not result in virulence defects in murine models of infection, suggesting that CpsY function in immune evasion is specific to the human host.


2014 ◽  
Vol 82 (7) ◽  
pp. 2890-2901 ◽  
Author(s):  
Marilena Gallotta ◽  
Giovanni Gancitano ◽  
Giampiero Pietrocola ◽  
Marirosa Mora ◽  
Alfredo Pezzicoli ◽  
...  

ABSTRACTGroup A streptococcus (GAS) is a human pathogen causing a wide repertoire of mild and severe diseases for which no vaccine is yet available. We recently reported the identification of three protein antigens that in combination conferred wide protection against GAS infection in mice. Here we focused our attention on the characterization of one of these three antigens, Spy0269, a highly conserved, surface-exposed, and immunogenic protein of unknown function. Deletion of thespy0269gene in a GAS M1 isolate resulted in very long bacterial chains, which is indicative of an impaired capacity of the knockout mutant to properly divide. Confocal microscopy and immunoprecipitation experiments demonstrated that the protein was mainly localized at the cell septum and could interactin vitrowith the cell division protein FtsZ, leading us to hypothesize that Spy0269 is a member of the GAS divisome machinery. Predicted structural domains and sequence homologies with known streptococcal adhesins suggested that this antigen could also play a role in mediating GAS interaction with host cells. This hypothesis was confirmed by showing that recombinant Spy0269 could bind to mammalian epithelial cellsin vitroand thatLactococcus lactisexpressing Spy0269 on its cell surface could adhere to mammalian cellsin vitroand to mice nasal mucosain vivo. On the basis of these data, we believe that Spy0269 is involved both in bacterial cell division and in adhesion to host cells and we propose to rename this multifunctional moonlighting protein as SpyAD (StreptococcuspyogenesAdhesion andDivision protein).


2008 ◽  
Vol 57 (11) ◽  
pp. 1383-1388 ◽  
Author(s):  
Takeaki Wajima ◽  
Somay Y. Murayama ◽  
Katsuhiko Sunaoshi ◽  
Eiichi Nakayama ◽  
Keisuke Sunakawa ◽  
...  

To determine the prevalence of macrolide antibiotic and levofloxacin resistance in infections with Streptococcus pyogenes (group A streptococcus or GAS), strains were collected from 45 medical institutions in various parts of Japan between October 2003 and September 2006. Four hundred and eighty-two strains from patients with GAS infections were characterized genetically. Strains were classified into four groups according to the type of infection: invasive infections (n=74) including sepsis, cellulitis and toxic-shock-like syndrome; acute otitis media (AOM; n=23); abscess (n=53); and pharyngotonsillitis (n=332). Among all strains, 32 emm types were identified; emm1 was significantly more common in invasive infections (39.2 %) and AOM (43.5 %) than in abscesses (3.8 %) or pharyngotonsillitis (10.2 %). emm12 and emm4 each accounted for 23.5 % of pharyngotonsillitis cases. Susceptibility of GAS strains to eight β-lactam agents was excellent, with MICs of 0.0005–0.063 μg ml−1. Macrolide-resistant strains accounted for 16.2 % of all strains, while the percentages of strains possessing the resistance genes erm(A), erm(B) and mef(A) were 2.5 %, 6.2 % and 7.5 %, respectively. Although no strains with high resistance to levofloxacin were found, strains with an MIC of 2–4 μg ml−1 (17.4 %) had amino acid substitutions at either Ser-79 or Asp-83 in ParC. These levofloxacin-intermediately resistant strains included 16 emm types, but macrolide-resistant strains were more likely than others to represent certain emm types.


2014 ◽  
Vol 63 (12) ◽  
pp. 1670-1678 ◽  
Author(s):  
John D. Steemson ◽  
Nicole J. Moreland ◽  
Deborah Williamson ◽  
Julie Morgan ◽  
Philip E. Carter ◽  
...  

Group A streptococcus (GAS) is responsible for a wide range of diseases ranging from superficial infections, such as pharyngitis and impetigo, to life-threatening diseases, such as toxic shock syndrome and acute rheumatic fever (ARF). GAS pili are hair-like extensions protruding from the cell surface and consist of highly immunogenic structural proteins: the backbone pilin (BP) and one or two accessory pilins (AP1 and AP2). The protease-resistant BP builds the pilus shaft and has been recognized as the T-antigen, which forms the basis of a major serological typing scheme that is often used as a supplement to M typing. A previous sequence analysis of the bp gene (tee gene) in 39 GAS isolates revealed 15 different bp/tee types. In this study, we sequenced the bp/tee gene from 100 GAS isolates obtained from patients with pharyngitis, ARF or invasive disease in New Zealand. We found 20 new bp/tee alleles and four new bp/tee types/subtypes. No association between bp/tee type and clinical outcome was observed. We confirmed earlier reports that the emm type and tee type are associated strongly, but we also found exceptions, where multiple tee types could be found in certain M/emm type strains, such as M/emm89. We also reported, for the first time, the existence of a chimeric bp/tee allele, which was assigned into a new subclade (bp/tee3.1). A strong sequence conservation of the bp/tee gene was observed within the individual bp/tee types/subtypes (>97 % sequence identity), as well as between historical and contemporary New Zealand and international GAS strains. This temporal and geographical sequence stability provided further evidence for the potential use of the BP/T-antigen as a vaccine target.


2020 ◽  
Vol 88 (8) ◽  
Author(s):  
Nishanth Makthal ◽  
Hackwon Do ◽  
Brian M. Wendel ◽  
Randall J. Olsen ◽  
John D. Helmann ◽  
...  

ABSTRACT Colonization by pathogenic bacteria depends on their ability to overcome host nutritional defenses and acquire nutrients. The human pathogen group A streptococcus (GAS) encounters the host defense factor calprotectin (CP) during infection. CP inhibits GAS growth in vitro by imposing zinc (Zn) limitation. However, GAS counterstrategies to combat CP-mediated Zn limitation and the in vivo relevance of CP-GAS interactions to bacterial pathogenesis remain unknown. Here, we report that GAS upregulates the AdcR regulon in response to CP-mediated Zn limitation. The AdcR regulon includes genes encoding Zn import (adcABC), Zn sparing (rpsN.2), and Zn scavenging systems (adcAII, phtD, and phtY). Each gene in the AdcR regulon contributes to GAS Zn acquisition and CP resistance. The ΔadcC and ΔrpsN.2 mutant strains were the most susceptible to CP, whereas the ΔadcA, ΔadcAII, and ΔphtD mutant strains displayed less CP sensitivity during growth in vitro. However, the ΔphtY mutant strain did not display an increased CP sensitivity. The varied sensitivity of the mutant strains to CP-mediated Zn limitation suggests distinct roles for individual AdcR regulon genes in GAS Zn acquisition. GAS upregulates the AdcR regulon during necrotizing fasciitis infection in WT mice but not in S100a9−/− mice lacking CP. This suggests that CP induces Zn deficiency in the host. Finally, consistent with the in vitro results, several of the AdcR regulon genes are critical for GAS virulence in WT mice, whereas they are dispensable for virulence in S100a9−/− mice, indicating the direct competition for Zn between CP and proteins encoded by the GAS AdcR regulon during infection.


Sign in / Sign up

Export Citation Format

Share Document