scholarly journals Respiratory Heterogeneity Shapes Biofilm Formation and Host Colonization in Uropathogenic Escherichia coli

mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Connor J. Beebout ◽  
Allison R. Eberly ◽  
Sabrina H. Werby ◽  
Seth A. Reasoner ◽  
John R. Brannon ◽  
...  

ABSTRACT Biofilms are multicellular bacterial communities encased in a self-secreted extracellular matrix comprised of polysaccharides, proteinaceous fibers, and DNA. Organization of these components lends spatial organization to the biofilm community such that biofilm residents can benefit from the production of common goods while being protected from exogenous insults. Spatial organization is driven by the presence of chemical gradients, such as oxygen. Here we show that two quinol oxidases found in Escherichia coli and other bacteria organize along the biofilm oxygen gradient and that this spatially coordinated expression controls architectural integrity. Cytochrome bd, a high-affinity quinol oxidase required for aerobic respiration under hypoxic conditions, is the most abundantly expressed respiratory complex in the biofilm community. Depletion of the cytochrome bd-expressing subpopulation compromises biofilm complexity by reducing the abundance of secreted extracellular matrix as well as increasing cellular sensitivity to exogenous stresses. Interrogation of the distribution of quinol oxidases in the planktonic state revealed that ∼15% of the population expresses cytochrome bd at atmospheric oxygen concentration, and this population dominates during acute urinary tract infection. These data point toward a bet-hedging mechanism in which heterogeneous expression of respiratory complexes ensures respiratory plasticity of E. coli across diverse host niches. IMPORTANCE Biofilms are multicellular bacterial communities encased in a self-secreted extracellular matrix comprised of polysaccharides, proteinaceous fibers, and DNA. Organization of these components lends spatial organization in the biofilm community. Here we demonstrate that oxygen gradients in uropathogenic Escherichia coli (UPEC) biofilms lead to spatially distinct expression programs for quinol oxidases—components of the terminal electron transport chain. Our studies reveal that the cytochrome bd-expressing subpopulation is critical for biofilm development and matrix production. In addition, we show that quinol oxidases are heterogeneously expressed in planktonic populations and that this respiratory heterogeneity provides a fitness advantage during infection. These studies define the contributions of quinol oxidases to biofilm physiology and suggest the presence of respiratory bet-hedging behavior in UPEC.

mBio ◽  
2013 ◽  
Vol 4 (5) ◽  
Author(s):  
Chia Hung ◽  
Yizhou Zhou ◽  
Jerome S. Pinkner ◽  
Karen W. Dodson ◽  
Jan R. Crowley ◽  
...  

ABSTRACTBacterial biofilms are ubiquitous in nature, and their resilience is derived in part from a complex extracellular matrix that can be tailored to meet environmental demands. Although common developmental stages leading to biofilm formation have been described, how the extracellular components are organized to allow three-dimensional biofilm development is not well understood. Here we show that uropathogenicEscherichia coli(UPEC) strains produce a biofilm with a highly ordered and complex extracellular matrix (ECM). We used electron microscopy (EM) techniques to image floating biofilms (pellicles) formed by UPEC. EM revealed intricately constructed substructures within the ECM that encase individual, spatially segregated bacteria with a distinctive morphology. Mutational and biochemical analyses of these biofilms confirmed curli as a major matrix component and revealed important roles for cellulose, flagella, and type 1 pili in pellicle integrity and ECM infrastructure. Collectively, the findings of this study elucidated that UPEC pellicles have a highly organized ultrastructure that varies spatially across the multicellular community.IMPORTANCEBacteria can form biofilms in diverse niches, including abiotic surfaces, living cells, and at the air-liquid interface of liquid media. Encasing these cellular communities is a self-produced extracellular matrix (ECM) that can be composed of proteins, polysaccharides, and nucleic acids. The ECM protects biofilm bacteria from environmental insults and also makes the dissolution of biofilms very challenging. As a result, formation of biofilms within humans (during infection) or on industrial material (such as water pipes) has detrimental and costly effects. In order to combat bacterial biofilms, a better understanding of components required for biofilm formation and the ECM is required. This study defined the ECM composition and architecture of floating pellicle biofilms formed byEscherichia coli.


2018 ◽  
Author(s):  
Connor J. Beebout ◽  
Allison R. Eberly ◽  
Sabrina H. Werby ◽  
Seth A. Reasoner ◽  
John R. Brannon ◽  
...  

AbstractBiofilms are multicellular bacterial communities encased in a self-secreted extracellular matrix comprised of polysaccharides, proteinaceous fibers, and DNA. Organization of these components lends spatial organization to the biofilm community such that biofilm residents can benefit from the production of common goods, while being protected from exogenous insults. Spatial organization is driven by the presence of chemical gradients, such as oxygen. Here we quantified and localized the expression of two Escherichia coli cytochrome oxidases in cells found in the biofilm state and defined their contribution to biofilm architecture. These studies elucidated a role for the high-affinity quinol oxidase cytochrome bd in matrix production and biofilm resident protection. Cytochrome bd was the most abundantly expressed respiratory complex in the biofilm community and was localized in the biofilm interior. Depletion of the cytochrome bd-expressing subpopulation led to decreased extracellular matrix and increased sensitivity of the community to exogenous stresses. Interrogation of the distribution of cytochrome oxidases in the planktonic state revealed that ∼15% of the population expresses cytochrome bd at atmospheric oxygen concentration, and this population dominates during acute urinary tract infection. These data point towards a bet-hedging mechanism in which heterogeneous expression of respiratory complexes ensures respiratory plasticity of E. coli across diverse host niches.


mBio ◽  
2018 ◽  
Vol 9 (4) ◽  
Author(s):  
E. J. Battaglioli ◽  
K. G. K. Goh ◽  
T. S. Atruktsang ◽  
K. Schwartz ◽  
M. A. Schembri ◽  
...  

ABSTRACTUropathogenicEscherichia coli(UPEC) is the most common etiologic agent of uncomplicated urinary tract infection (UTI). An important mechanism of gene regulation in UPEC is phase variation that involves inversion of a promoter-containing DNA element via enzymatic activity of tyrosine recombinases, resulting in biphasic, ON or OFF expression of target genes. The UPEC reference strain CFT073 has five tyrosine site-specific recombinases that function at two previously characterized promoter inversion systems,fimSandhyxS. Three of the five recombinases are located proximally to their cognate target elements, which is typical of promoter inversion systems. The genes for the other two recombinases, IpuA and IpuB, are located distal from these sites. Here, we identified and characterized a third phase-variable invertible element in CFT073,ipuS, located proximal toipuAandipuB. The inversion ofipuSis catalyzed by four of the five CFT073 recombinases. Orientation of the element drives transcription of a two-gene operon containingipuR, a predicted LuxR-type regulator, andupaE, a predicted autotransporter. We show that the predicted autotransporter UpaE is surface located and facilitates biofilm formation as well as adhesion to extracellular matrix proteins in a K-12 recombinant background. Consistent with this phenotype, theipuSON condition in CFT073 results in defective swimming motility, increased adherence to human kidney epithelial cells, and a positive competitive kidney colonization advantage in experimental mouse UTIs. Overall, the identification of a third phase switch in UPEC that is regulated by a shared set of recombinases describes a complex phase-variable virulence network in UPEC.IMPORTANCEUropathogenicEscherichia coli(UPEC) is the most common cause of urinary tract infection (UTI). ON versus OFF phase switching by inversion of small DNA elements at two chromosome sites in UPEC regulates the expression of important virulence factors, including the type 1 fimbria adhesion organelle. In this report, we describe a third invertible element,ipuS, in the UPEC reference strain CFT073. The inversion ofipuScontrols the phase-variable expression ofupaE, an autotransporter gene that encodes a surface protein involved in adherence to extracellular matrix proteins and colonization of the kidneys in a murine model of UTI.


2016 ◽  
Vol 198 (24) ◽  
pp. 3329-3334 ◽  
Author(s):  
David A. Hufnagel ◽  
Margery L. Evans ◽  
Sarah E. Greene ◽  
Jerome S. Pinkner ◽  
Scott J. Hultgren ◽  
...  

ABSTRACTThe extracellular matrix protectsEscherichia colifrom immune cells, oxidative stress, predation, and other environmental stresses. Production of theE. coliextracellular matrix is regulated by transcription factors that are tuned to environmental conditions. The biofilm master regulator protein CsgD upregulates curli and cellulose, the two major polymers in the extracellular matrix of uropathogenicE. coli(UPEC) biofilms. We found that cyclic AMP (cAMP) regulates curli, cellulose, and UPEC biofilms throughcsgD. The alarmone cAMP is produced by adenylate cyclase (CyaA), and deletion ofcyaAresulted in reduced extracellular matrix production and biofilm formation. Thecataboliterepressorprotein (CRP) positively regulatedcsgDtranscription, leading to curli and cellulose production in the UPEC isolate, UTI89. Glucose, a known inhibitor of CyaA activity, blocked extracellular matrix formation when added to the growth medium. The mutant strains ΔcyaAand Δcrpdid not produce rugose biofilms, pellicles, curli, cellulose, or CsgD. Three putative CRP binding sites were identified within thecsgD-csgBintergenic region, and purified CRP could gel shift thecsgD-csgBintergenic region. Additionally, we found that CRP binded upstream ofkpsMT, which encodes machinery for K1 capsule production. Together our work shows that cAMP and CRP influenceE. colibiofilms through transcriptional regulation ofcsgD.IMPORTANCEThecataboliterepressorprotein (CRP)-cyclic AMP (cAMP) complex influences the transcription of ∼7% of genes on theEscherichia colichromosome (D. Zheng, C. Constantinidou, J. L. Hobman, and S. D. Minchin, Nucleic Acids Res 32:5874–5893, 2004,https://dx.doi.org/10.1093/nar/gkh908). Glucose inhibitsE. colibiofilm formation, and ΔcyaAand Δcrpmutants show impaired biofilm formation (D. W. Jackson, J.W. Simecka, and T. Romeo, J Bacteriol 184:3406–3410, 2002,https://dx.doi.org/10.1128/JB.184.12.3406-3410.2002). We determined that the cAMP-CRP complex regulates curli and cellulose production and the formation of rugose and pellicle biofilms throughcsgD. Additionally, we propose that cAMP may work as a signaling compound for uropathogenicE. coli(UPEC) to transition from the bladder lumen to inside epithelial cells for intracellular bacterial community formation through K1 capsule regulation.


2018 ◽  
Vol 201 (1) ◽  
Author(s):  
Sara R. Palmer ◽  
Zhi Ren ◽  
Geelsu Hwang ◽  
Yuan Liu ◽  
Ashton Combs ◽  
...  

ABSTRACTProper envelope biogenesis ofStreptococcus mutans, a biofilm-forming and dental caries-causing oral pathogen, requires two paralogs (yidC1andyidC2) of the universally conserved YidC/Oxa1/Alb3 family of membrane integral chaperones and insertases. The deletion of either paralog attenuates virulencein vivo, but the mechanisms of disruption remain unclear. Here, we determined whether the deletion ofyidCaffects cell surface properties, extracellular glucan production, and/or the structural organization of the exopolysaccharide (EPS) matrix and biophysical properties ofS. mutansbiofilm. Compared to the wild type, the ΔyidC2 mutant lacked staining with fluorescent vancomycin at the division septum, while the ΔyidC1mutant resembled the wild type. Additionally, the deletion of eitheryidC1oryidC2resulted in less insoluble glucan synthesis but produced more soluble glucans, especially at early and mid-exponential-growth phases. Alteration of glucan synthesis by both mutants yielded biofilms with less dry weight and insoluble EPS. In particular, the deletion ofyidC2resulted in a significant reduction in biofilm biomass and pronounced defects in the spatial organization of the EPS matrix, thus modifying the three-dimensional (3D) biofilm architecture. The defective biofilm harbored smaller bacterial clusters with high cell density and less surrounding EPS than those of the wild type, which was stiffer in compression yet more susceptible to removal by shear. Together, our results indicate that the elimination of eitheryidCparalog results in changes to the cell envelope and glucan production that ultimately disrupts biofilm development and EPS matrix structure/composition, thereby altering the physical properties of the biofilms and facilitating their removal. YidC proteins, therefore, represent potential therapeutic targets for cariogenic biofilm control.IMPORTANCEYidC proteins are membrane-localized chaperone insertases that are universally conserved in all bacteria and are traditionally studied in the context of membrane protein insertion and assembly. Both YidC paralogs of the cariogenic pathogenStreptococcus mutansare required for proper envelope biogenesis and full virulence, indicating that these proteins may also contribute to optimal biofilm formation in streptococci. Here, we show that the deletion of eitheryidCresults in changes to the structure and physical properties of the EPS matrix produced byS. mutans, ultimately impairing optimal biofilm development, diminishing its mechanical stability, and facilitating its removal. Importantly, the universal conservation of bacterialyidCorthologs, combined with our findings, provide a rationale for YidC as a possible drug target for antibiofilm therapies.


mBio ◽  
2013 ◽  
Vol 4 (4) ◽  
Author(s):  
Steven S. Witkin ◽  
Helena Mendes-Soares ◽  
Iara M. Linhares ◽  
Aswathi Jayaram ◽  
William J. Ledger ◽  
...  

ABSTRACTWe evaluated levels of vaginal extracellular matrix metalloproteinase inducer (EMMPRIN) and matrix metalloproteinase (MMP-8) in vaginal secretions in relation to the composition of vaginal bacterial communities andd- andl-lactic acid levels. The composition of vaginal bacterial communities in 46 women was determined by pyrosequencing the V1 to V3 region of 16S rRNA genes. Lactobacilli were dominant in 71.3% of the women, followed byGardnerella(17.4%),Streptococcus(8.7%), andEnterococcus(2.2%). Of the lactobacillus-dominated communities, 51.5% were dominated byLactobacillus crispatus, 36.4% byLactobacillus iners, and 6.1% each byLactobacillus gasseriandLactobacillus jensenii. Concentrations ofl-lactic acid were slightly higher in lactobacillus-dominated vaginal samples, but most differences were not statistically significant.d-Lactic acid levels were higher in samples containingL. crispatusthan in those withL. iners(P< 0.0001) orGardnerella(P= 0.0002). The relative proportion ofd-lactic acid in vaginal communities dominated by species of lactobacilli was in concordance with the proportions found in axenic cultures of the various species grownin vitro. Levels ofl-lactic acid (P< 0.0001) and the ratio ofl-lactic acid tod-lactic acid (P= 0.0060), but not concentrations ofd-lactic acid, were also correlated with EMMPRIN concentrations. Moreover, vaginal concentrations of EMMPRIN and MMP-8 levels were highly correlated (P< 0.0001). Taken together, the data suggest the relative proportion ofl- tod-lactic acid isomers in the vagina may influence the extent of local EMMPRIN production and subsequent induction of MMP-8. The expression of these proteins may help determine the ability of bacteria to transverse the cervix and initiate upper genital tract infections.IMPORTANCEA large proportion of preterm births (>50%) result from infections caused by bacteria originating in the vagina, which requires that they traverse the cervix. Factors that influence susceptibility to these infections are not well understood; however, there is evidence that matrix metalloproteinase (MMP-8) is known to alter the integrity of the cervix. In this work, we show that concentrations of vaginal extracellular matrix metalloproteinase inducer (EMMPRIN) are influenced by members of the vaginal microbial community and concentrations ofd- orl-lactic acid isomers in vaginal secretions. Elevated levels ofd-lactic acid and the ratio ofd- tol-lactic acid influence EMMPRIN concentrations as well as MMP-8 levels. Thus, isomers of lactic acid may function as signaling molecules that alter host gene expression and influence risk of infection-related preterm birth.


Author(s):  
Katrin Schilcher ◽  
Alexander R. Horswill

SUMMARY In many natural and clinical settings, bacteria are associated with some type of biotic or abiotic surface that enables them to form biofilms, a multicellular lifestyle with bacteria embedded in an extracellular matrix. Staphylococcus aureus and Staphylococcus epidermidis, the most frequent causes of biofilm-associated infections on indwelling medical devices, can switch between an existence as single free-floating cells and multicellular biofilms. During biofilm formation, cells first attach to a surface and then multiply to form microcolonies. They subsequently produce the extracellular matrix, a hallmark of biofilm formation, which consists of polysaccharides, proteins, and extracellular DNA. After biofilm maturation into three-dimensional structures, the biofilm community undergoes a disassembly process that leads to the dissemination of staphylococcal cells. As biofilms are dynamic and complex biological systems, staphylococci have evolved a vast network of regulatory mechanisms to modify and fine-tune biofilm development upon changes in environmental conditions. Thus, biofilm formation is used as a strategy for survival and persistence in the human host and can serve as a reservoir for spreading to new infection sites. Moreover, staphylococcal biofilms provide enhanced resilience toward antibiotics and the immune response and impose remarkable therapeutic challenges in clinics worldwide. This review provides an overview and an updated perspective on staphylococcal biofilms, describing the characteristic features of biofilm formation, the structural and functional properties of the biofilm matrix, and the most important mechanisms involved in the regulation of staphylococcal biofilm formation. Finally, we highlight promising strategies and technologies, including multitargeted or combinational therapies, to eradicate staphylococcal biofilms.


2011 ◽  
Vol 77 (15) ◽  
pp. 5230-5237 ◽  
Author(s):  
Yongqin Jiao ◽  
Patrik D'haeseleer ◽  
Brian D. Dill ◽  
Manesh Shah ◽  
Nathan C. VerBerkmoes ◽  
...  

ABSTRACTIn microbial communities, extracellular polymeric substances (EPS), also called the extracellular matrix, provide the spatial organization and structural stability during biofilm development. One of the major components of EPS is protein, but it is not clear what specific functions these proteins contribute to the extracellular matrix or to microbial physiology. To investigate this in biofilms from an extremely acidic environment, we used shotgun proteomics analyses to identify proteins associated with EPS in biofilms at two developmental stages, designated DS1 and DS2. The proteome composition of the EPS was significantly different from that of the cell fraction, with more than 80% of the cellular proteins underrepresented or undetectable in EPS. In contrast, predicted periplasmic, outer membrane, and extracellular proteins were overrepresented by 3- to 7-fold in EPS. Also, EPS proteins were more basic by ∼2 pH units on average and about half the length. When categorized by predicted function, proteins involved in motility, defense, cell envelope, and unknown functions were enriched in EPS. Chaperones, such as histone-like DNA binding protein and cold shock protein, were overrepresented in EPS. Enzymes, such as protein peptidases, disulfide-isomerases, and those associated with cell wall and polysaccharide metabolism, were also detected. Two of these enzymes, identified as β-N-acetylhexosaminidase and cellulase, were confirmed in the EPS fraction by enzymatic activity assays. Compared to the differences between EPS and cellular fractions, the relative differences in the EPS proteomes between DS1 and DS2 were smaller and consistent with expected physiological changes during biofilm development.


2011 ◽  
Vol 79 (9) ◽  
pp. 3744-3750 ◽  
Author(s):  
Mauricio J. Farfan ◽  
Lidia Cantero ◽  
Roberto Vidal ◽  
Douglas J. Botkin ◽  
Alfredo G. Torres

ABSTRACTAdherence to intestinal cells is a key process in infection caused by enterohemorrhagicEscherichia coli(EHEC). Several adhesion factors that mediate the binding of EHEC to intestinal cells have been described, but the receptors involved in their recognition are not fully characterized. Extracellular matrix (ECM) proteins might act as receptors involved in the recognition of enteric pathogens, including EHEC. In this study, we sought to characterize the binding of EHEC O157:H7 to ECM proteins commonly present in the intestine. We found that EHEC prototype strains as well as other clinical isolates adhered more abundantly to surfaces coated with fibronectin, laminin, and collagen IV. Further characterization of this phenotype, by using antiserum raised against the LpfA1 putative major fimbrial subunit and by addition of mannose, showed that a reduced binding of EHEC to ECM proteins was observed in a long polar fimbria (lpf) mutant. We also found that the two regulators, H-NS and Ler, had an effect in EHEC Lpf-mediated binding to ECM, supporting the roles of these tightly regulated fimbriae as adherence factors. Purified Lpf major subunit bound to all of the ECM proteins tested. Finally, increased bacterial adherence was observed when T84 cells, preincubated with ECM proteins, were infected with EHEC. Taken together, these findings suggest that the interaction of Lpf and ECM proteins contributes to the EHEC colonization of the gastrointestinal tract.


2020 ◽  
Vol 1 (2) ◽  
pp. 26-29
Author(s):  
Kome Otokunefor ◽  
Deborah Melex ◽  
Gideon Abu

Majority of bacterial communities exist as biofilms and these contribute to the survival of the bacteria. Biofilm development has been associated with protection from adverse environmental conditions and resistance to harmful agents. Generally, however data on biofilm-forming potential of bacteria in Nigeria is sparse. This study was therefore aimed at analyzing variations in biofilm-forming potential of Escherichia coli from various sources in Port Harcourt, Nigeria. Previously characterized clinical (30) and non-clinical (30) E. coli isolates were assessed for their biofilm-forming potential using the Congo Red agar method and variations in this potential determined as weak, moderate or strong. Majority of isolates (67%) had the potential to form biofilms but only 40% of isolates exhibiting biofilm-forming potential were from clinical sources. Isolates exhibited variable degrees of biofilm-forming potential, with only non-clinical isolates exhibiting strong potential. Majority of both clinical and non-clinical isolates (68.7% and 88% respectively) exhibited moderate biofilm-forming potential. The higher occurrence of E. coli exhibiting biofilm-forming potential among non-clinical isolates possibly reflects the essential role biofilms play in the survival of bacteria in nature, but not in infection cases. This study reports on a high level association between the isolates and biofilm production and highlights differences in the abilities of biofilm production between clinical and non-clinical isolates.  


Sign in / Sign up

Export Citation Format

Share Document