scholarly journals Escherichia coli Biofilms Have an Organized and Complex Extracellular Matrix Structure

mBio ◽  
2013 ◽  
Vol 4 (5) ◽  
Author(s):  
Chia Hung ◽  
Yizhou Zhou ◽  
Jerome S. Pinkner ◽  
Karen W. Dodson ◽  
Jan R. Crowley ◽  
...  

ABSTRACTBacterial biofilms are ubiquitous in nature, and their resilience is derived in part from a complex extracellular matrix that can be tailored to meet environmental demands. Although common developmental stages leading to biofilm formation have been described, how the extracellular components are organized to allow three-dimensional biofilm development is not well understood. Here we show that uropathogenicEscherichia coli(UPEC) strains produce a biofilm with a highly ordered and complex extracellular matrix (ECM). We used electron microscopy (EM) techniques to image floating biofilms (pellicles) formed by UPEC. EM revealed intricately constructed substructures within the ECM that encase individual, spatially segregated bacteria with a distinctive morphology. Mutational and biochemical analyses of these biofilms confirmed curli as a major matrix component and revealed important roles for cellulose, flagella, and type 1 pili in pellicle integrity and ECM infrastructure. Collectively, the findings of this study elucidated that UPEC pellicles have a highly organized ultrastructure that varies spatially across the multicellular community.IMPORTANCEBacteria can form biofilms in diverse niches, including abiotic surfaces, living cells, and at the air-liquid interface of liquid media. Encasing these cellular communities is a self-produced extracellular matrix (ECM) that can be composed of proteins, polysaccharides, and nucleic acids. The ECM protects biofilm bacteria from environmental insults and also makes the dissolution of biofilms very challenging. As a result, formation of biofilms within humans (during infection) or on industrial material (such as water pipes) has detrimental and costly effects. In order to combat bacterial biofilms, a better understanding of components required for biofilm formation and the ECM is required. This study defined the ECM composition and architecture of floating pellicle biofilms formed byEscherichia coli.

Author(s):  
Katrin Schilcher ◽  
Alexander R. Horswill

SUMMARY In many natural and clinical settings, bacteria are associated with some type of biotic or abiotic surface that enables them to form biofilms, a multicellular lifestyle with bacteria embedded in an extracellular matrix. Staphylococcus aureus and Staphylococcus epidermidis, the most frequent causes of biofilm-associated infections on indwelling medical devices, can switch between an existence as single free-floating cells and multicellular biofilms. During biofilm formation, cells first attach to a surface and then multiply to form microcolonies. They subsequently produce the extracellular matrix, a hallmark of biofilm formation, which consists of polysaccharides, proteins, and extracellular DNA. After biofilm maturation into three-dimensional structures, the biofilm community undergoes a disassembly process that leads to the dissemination of staphylococcal cells. As biofilms are dynamic and complex biological systems, staphylococci have evolved a vast network of regulatory mechanisms to modify and fine-tune biofilm development upon changes in environmental conditions. Thus, biofilm formation is used as a strategy for survival and persistence in the human host and can serve as a reservoir for spreading to new infection sites. Moreover, staphylococcal biofilms provide enhanced resilience toward antibiotics and the immune response and impose remarkable therapeutic challenges in clinics worldwide. This review provides an overview and an updated perspective on staphylococcal biofilms, describing the characteristic features of biofilm formation, the structural and functional properties of the biofilm matrix, and the most important mechanisms involved in the regulation of staphylococcal biofilm formation. Finally, we highlight promising strategies and technologies, including multitargeted or combinational therapies, to eradicate staphylococcal biofilms.


2003 ◽  
Vol 185 (18) ◽  
pp. 5632-5638 ◽  
Author(s):  
Konstantin Agladze ◽  
Debra Jackson ◽  
Tony Romeo

ABSTRACT The complex architecture of bacterial biofilms inevitably raises the question of their design. Microstructure of developing Escherichia coli biofilms was analyzed under static and laminar flow conditions. Cell attachment during early biofilm formation exhibited periodic density patterns that persisted during development. Several models for the origination of biofilm microstructure are considered, including an activator-inhibitor or Turing model.


mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Connor J. Beebout ◽  
Allison R. Eberly ◽  
Sabrina H. Werby ◽  
Seth A. Reasoner ◽  
John R. Brannon ◽  
...  

ABSTRACT Biofilms are multicellular bacterial communities encased in a self-secreted extracellular matrix comprised of polysaccharides, proteinaceous fibers, and DNA. Organization of these components lends spatial organization to the biofilm community such that biofilm residents can benefit from the production of common goods while being protected from exogenous insults. Spatial organization is driven by the presence of chemical gradients, such as oxygen. Here we show that two quinol oxidases found in Escherichia coli and other bacteria organize along the biofilm oxygen gradient and that this spatially coordinated expression controls architectural integrity. Cytochrome bd, a high-affinity quinol oxidase required for aerobic respiration under hypoxic conditions, is the most abundantly expressed respiratory complex in the biofilm community. Depletion of the cytochrome bd-expressing subpopulation compromises biofilm complexity by reducing the abundance of secreted extracellular matrix as well as increasing cellular sensitivity to exogenous stresses. Interrogation of the distribution of quinol oxidases in the planktonic state revealed that ∼15% of the population expresses cytochrome bd at atmospheric oxygen concentration, and this population dominates during acute urinary tract infection. These data point toward a bet-hedging mechanism in which heterogeneous expression of respiratory complexes ensures respiratory plasticity of E. coli across diverse host niches. IMPORTANCE Biofilms are multicellular bacterial communities encased in a self-secreted extracellular matrix comprised of polysaccharides, proteinaceous fibers, and DNA. Organization of these components lends spatial organization in the biofilm community. Here we demonstrate that oxygen gradients in uropathogenic Escherichia coli (UPEC) biofilms lead to spatially distinct expression programs for quinol oxidases—components of the terminal electron transport chain. Our studies reveal that the cytochrome bd-expressing subpopulation is critical for biofilm development and matrix production. In addition, we show that quinol oxidases are heterogeneously expressed in planktonic populations and that this respiratory heterogeneity provides a fitness advantage during infection. These studies define the contributions of quinol oxidases to biofilm physiology and suggest the presence of respiratory bet-hedging behavior in UPEC.


2016 ◽  
Vol 198 (24) ◽  
pp. 3329-3334 ◽  
Author(s):  
David A. Hufnagel ◽  
Margery L. Evans ◽  
Sarah E. Greene ◽  
Jerome S. Pinkner ◽  
Scott J. Hultgren ◽  
...  

ABSTRACTThe extracellular matrix protectsEscherichia colifrom immune cells, oxidative stress, predation, and other environmental stresses. Production of theE. coliextracellular matrix is regulated by transcription factors that are tuned to environmental conditions. The biofilm master regulator protein CsgD upregulates curli and cellulose, the two major polymers in the extracellular matrix of uropathogenicE. coli(UPEC) biofilms. We found that cyclic AMP (cAMP) regulates curli, cellulose, and UPEC biofilms throughcsgD. The alarmone cAMP is produced by adenylate cyclase (CyaA), and deletion ofcyaAresulted in reduced extracellular matrix production and biofilm formation. Thecataboliterepressorprotein (CRP) positively regulatedcsgDtranscription, leading to curli and cellulose production in the UPEC isolate, UTI89. Glucose, a known inhibitor of CyaA activity, blocked extracellular matrix formation when added to the growth medium. The mutant strains ΔcyaAand Δcrpdid not produce rugose biofilms, pellicles, curli, cellulose, or CsgD. Three putative CRP binding sites were identified within thecsgD-csgBintergenic region, and purified CRP could gel shift thecsgD-csgBintergenic region. Additionally, we found that CRP binded upstream ofkpsMT, which encodes machinery for K1 capsule production. Together our work shows that cAMP and CRP influenceE. colibiofilms through transcriptional regulation ofcsgD.IMPORTANCEThecataboliterepressorprotein (CRP)-cyclic AMP (cAMP) complex influences the transcription of ∼7% of genes on theEscherichia colichromosome (D. Zheng, C. Constantinidou, J. L. Hobman, and S. D. Minchin, Nucleic Acids Res 32:5874–5893, 2004,https://dx.doi.org/10.1093/nar/gkh908). Glucose inhibitsE. colibiofilm formation, and ΔcyaAand Δcrpmutants show impaired biofilm formation (D. W. Jackson, J.W. Simecka, and T. Romeo, J Bacteriol 184:3406–3410, 2002,https://dx.doi.org/10.1128/JB.184.12.3406-3410.2002). We determined that the cAMP-CRP complex regulates curli and cellulose production and the formation of rugose and pellicle biofilms throughcsgD. Additionally, we propose that cAMP may work as a signaling compound for uropathogenicE. coli(UPEC) to transition from the bladder lumen to inside epithelial cells for intracellular bacterial community formation through K1 capsule regulation.


2006 ◽  
Vol 188 (11) ◽  
pp. 3952-3961 ◽  
Author(s):  
Cristiano G. Moreira ◽  
Kelli Palmer ◽  
Marvin Whiteley ◽  
Marcelo P. Sircili ◽  
Luiz R. Trabulsi ◽  
...  

ABSTRACT Microcolony formation is one of the initial steps in biofilm development, and in enteropathogenic Escherichia coli (EPEC) it is mediated by several adhesins, including the bundle-forming pilus (BFP) and the EspA filament. Here we report that EPEC forms biofilms on plastic under static conditions and a flowthrough continuous culture system. The abilities of several EPEC isogenic mutants to form biofilms were assessed. Adhesins such as BFP and EspA, important in microcolony formation on epithelial cells, are also involved in bacterial aggregation during biofilm formation on abiotic surfaces. Mutants that do not express BFP or EspA form more-diffuse biofilms than does the wild type. We also determined, using gfp transcriptional fusions, that, consistent with the role of these adhesins in biofilms, the genes encoding BFP and EspA are expressed during biofilm formation. Finally, expression of espA is controlled by a quorum-sensing (QS) regulatory mechanism, and the EPEC qseA QS mutant also forms altered biofilms, suggesting that this signaling mechanism plays an important role in EPEC biofilm development. Taken together, these studies allowed us to propose a model of EPEC biofilm formation.


Microbiology ◽  
2010 ◽  
Vol 156 (8) ◽  
pp. 2408-2417 ◽  
Author(s):  
Timo A. Lehti ◽  
Philippe Bauchart ◽  
Johanna Heikkinen ◽  
Jörg Hacker ◽  
Timo K. Korhonen ◽  
...  

The mat (or ecp) fimbrial operon is ubiquitous and conserved in Escherichia coli, but its functions remain poorly described. In routine growth media newborn meningitis isolates of E. coli express the meningitis-associated and temperature-regulated (Mat) fimbria, also termed E. coli common pilus (ECP), at 20 °C, and here we show that the six-gene (matABCDEF)-encoded Mat fimbria is needed for temperature-dependent biofilm formation on abiotic surfaces. The matBCDEF deletion mutant of meningitis E. coli IHE 3034 was defective in an early stage of biofilm development and consequently unable to establish a detectable biofilm, contrasting with IHE 3034 derivatives deleted for flagella, type 1 fimbriae or S-fimbriae, which retained the wild-type biofilm phenotype. Furthermore, induced production of Mat fimbriae from expression plasmids enabled biofilm-deficient E. coli K-12 cells to form biofilm at 20 °C. No biofilm was detected with IHE 3034 or MG1655 strains grown at 37 °C. The surface expression of Mat fimbriae and the frequency of Mat-positive cells in the IHE 3034 population from 20 °C were high and remained unaltered during the transition from planktonic to biofilm growth and within the matured biofilm community. Considering the prevalence of the highly conserved mat locus in E. coli genomes, we hypothesize that Mat fimbria-mediated biofilm formation is an ancestral characteristic of E. coli.


2018 ◽  
Vol 87 (1) ◽  
Author(s):  
David R. Danforth ◽  
Gaoyan Tang-Siegel ◽  
Teresa Ruiz ◽  
Keith P. Mintz

ABSTRACTPeriodontitis is an inflammatory disease caused by polymicrobial biofilms. The periodontal pathogenAggregatibacter actinomycetemcomitansdisplays two proteinaceous surface structures, the fimbriae and the nonfimbrial extracellular matrix binding protein A (EmaA), as observed by electron microscopy. Fimbriae participate in biofilm biogenesis and the EmaA adhesins mediate collagen binding. However, in the absence of fimbriae,A. actinomycetemcomitansstill retains the potential to form robust biofilms, suggesting that other surface macromolecules participate in biofilm development. Here, isogenic mutant strains lacking EmaA structures, but still expressing fimbriae, were observed to have reduced biofilm potential. In strains lacking both EmaA and fimbriae, biofilm mass was reduced by 80%. EmaA enhanced biofilm formation in different strains, independent of the fimbriation state or serotype. Confocal microscopy revealed differences in cell density within microcolonies between the EmaA positive and mutant strains. EmaA-mediated biofilm formation was found to be independent of the glycosylation state and the precise three-dimensional conformation of the protein, and thus this function is uncorrelated with collagen binding activity. The data suggest that EmaA is a multifunctional adhesin that utilizes different mechanisms to enhance bacterial binding to collagen and to enhance biofilm formation, both of which are important forA. actinomycetemcomitanscolonization and subsequent infection.


Biofilms ◽  
2005 ◽  
Vol 2 (4) ◽  
pp. 245-273

The effect of growth and detachment on formation of large-scale biofilm structureBiofilm cohesive energy density determination using a novel atomic force microscopy methodologyFluorescence correlation spectroscopy under two-photon excitation for the study of diffusion and reactivity of bacteriophage inside bacterial biofilmsBiothermodynamic characterization and dynamic analysis of biofilms using calorimetryBiomimetic antifouling coatings for sensor surfaces for water monitoring: performance control in defined biofilm cultures and under real environmental conditionsThe contribution of rpos to formation of Escherichia coli biofilmsSynergistic effects in mixed Escherichia coli biofilms: conjugative plasmid transfer drives biofilm expansionThe universal stress protein PA3309 in Pseudomonas aeruginosa is induced in biofilmsExtracellular polymeric substances from biofilms on membranes in waste-water treatment plantsBiofilm-to-planktonic cell yield: a strategy for proliferationPhysiological and phylogenetic characterization of the dispersed and loosely attached fraction of activated sludge flocsTowards a deterministic model of biofilm detachment: an experimental studyEffect of backwash on the characteristics of biofilm in a biological activated filter reactor using elemental sulfur particlesProcess performance and biomass properties in membrane-aerated bioreactorsBioaugmentation via conjugation in biofilms treating 3-chloroaniline: effects of selective pressureEffect of phosphorus on biofilm growth in a completely mixed biofilm reactorImpacts of biofilm development on reactive transport in porous media under variable flow regimensInfluence of biofilms on colloid mobility in the subsurfaceBiofilms in amendable in situ microcosms indicate relevant electron acceptor processes at a BTEX-contaminated aquiferFunctional biodiversity of complex biofilms grown on polychlorinated biphenyl oilIdentification and characterization of biofilm formation phenotypes of several clinically relevant Streptococcus pyogenes serotype strainsSelected probiotic bacteria disrupt biofilm development of vancomycin-resistant Enterococcus faeciumComparison of the extracellular polymeric substances of Candida albicans and Candida dubliniensis biofilmsInfluence of quorum-sensing regulated production of an antimicrobial component by Serratia plymuthica on establishment of dual species biofilms with Escherichia coliBiofilm formation by the thermophilic and cellulolytic actinomycete Thermobifida fuscaBiomonitoring of bacterial contamination on different surfaces of food-processing machinesRole of the flagella during the adhesion of Listeria monocytogenes EGD-e to inert surfaces after cultivation at different pHs and temperaturesAdhesion of Saccharomyces cerevisiae to stainless steel: influence of surface propertiesInvestigating the mechanical strength of biofilms with fluid dynamic gaugingThree-dimensional biofilm model with individual cells and continuum extracellular polymeric substances matrixA three-dimensional computer model analysis of four hypothetical biofilm detachment mechanismsModelling biofilm growth, detachment and fluid flow in a cross-section of tube reactorsBiofilm games


2012 ◽  
Vol 78 (23) ◽  
pp. 8331-8339 ◽  
Author(s):  
Jessica R. Sheldon ◽  
Mi-Sung Yim ◽  
Jessica H. Saliba ◽  
Wai-Hong Chung ◽  
Kwok-Yin Wong ◽  
...  

ABSTRACTThe protein RpoS is responsible for mediating cell survival during the stationary phase by conferring cell resistance to various stressors and has been linked to biofilm formation. In this study, the role of therpoSgene inEscherichia coliO157:H7 biofilm formation and survival in water was investigated. Confocal scanning laser microscopy of biofilms established on coverslips revealed a nutrient-dependent role ofrpoSin biofilm formation, where the biofilm biomass volume of therpoSmutant was 2.4- to 7.5-fold the size of itsrpoS+wild-type counterpart in minimal growth medium. The enhanced biofilm formation of therpoSmutant did not, however, translate to increased survival in sterile double-distilled water (ddH2O), filter-sterilized lake water, or unfiltered lake water. TherpoSmutant had an overall reduction of 3.10 and 5.30 log10in sterile ddH2O and filter-sterilized lake water, respectively, while only minor reductions of 0.53 and 0.61 log10in viable counts were observed for the wild-type form in the two media over a 13-day period, respectively. However, the survival rates of the detached biofilm-derivedrpoS+andrpoSmutant cells were comparable. Under the competitive stress conditions of unfiltered lake water, the advantage conferred by the presence ofrpoSwas lost, and both the wild-type and knockout forms displayed similar declines in viable counts. These results suggest thatrpoSdoes have an influence on both biofilm formation and survival ofE. coliO157:H7 and that the advantage conferred byrpoSis contingent on the environmental conditions.


mBio ◽  
2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Clémentine Dressaire ◽  
Ricardo Neves Moreira ◽  
Susana Barahona ◽  
António Pedro Alves de Matos ◽  
Cecília Maria Arraiano

ABSTRACTBacteria are extremely versatile organisms that rapidly adapt to changing environments. When bacterial cells switch from planktonic growth to biofilm, flagellum formation is turned off and the production of fimbriae and extracellular polysaccharides is switched on. BolA is present in most Gram-negative bacteria, and homologues can be found from proteobacteria to eukaryotes. Here, we show that BolA is a new bacterial transcription factor that modulates the switch from a planktonic to a sessile lifestyle. It negatively modulates flagellar biosynthesis and swimming capacity inEscherichia coli. Furthermore, BolA overexpression favors biofilm formation, involving the production of fimbria-like adhesins and curli. Our results also demonstrate that BolA is a protein with high affinity to DNA and is able to regulate many genes on a genome-wide scale. Moreover, we show that the most significant targets of this protein involve a complex network of genes encoding proteins related to biofilm development. Herein, we propose that BolA is a motile/adhesive transcriptional switch, specifically involved in the transition between the planktonic and the attachment stage of biofilm formation.IMPORTANCEEscherichia colicells possess several mechanisms to cope with stresses. BolA has been described as a protein important for survival in late stages of bacterial growth and under harsh environmental conditions. BolA-like proteins are widely conserved from prokaryotes to eukaryotes. Although their exact function is not fully established at the molecular level, they seem to be involved in cell proliferation or cell cycle regulation. Here, we unraveled the role of BolA in biofilm development and bacterial motility. Our work suggests that BolA actively contributes to the decision of bacteria to arrest flagellar production and initiate the attachment to form structured communities, such as biofilms. The molecular studies of different lifestyles coupled with the comprehension of the BolA functions may be an important step for future perspectives, with health care and biotechnology applications.


Sign in / Sign up

Export Citation Format

Share Document